Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Biosorption of Ni(ii) and Pb(ii) by Phanerochaete chrysosporium from a binary metal system - Kinetics
Date
2001-01-01
Author
Ceribasi, IH
Yetiş, Ülkü
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
The biosorption kinetics of Ni(II) and Pb(II) by the resting cells of a lignolytic white-rot fungus, Phanerochaete chrysosporium. from a binary metal system were investigated. Kinetic studies revealed that biosorption takes place in two stages: a rapid surface adsorption, within the first 30 min, and a slow intracellular diffusion till the end of the 3 h contact time. In the first minutes of contact solution pH decreased sharply, parallel to the fast metal uptake, probably because of the protons released by the biosorbent. As sorption equilibrium was reached, solution pH also reached an equilibrium level. Metal biosorption capacities increased as the initial metal concentrations (C-i) increased. independent of initial pH (pH(i)) and generally the metal with higher C-i had a higher uptake capacity. The results also show that some portion of the metal. ions sorbed by P. chrysosporium was readily released to solution with a decrease in pH. At equilibrium, the maximum total metal uptake of P. chrysosporium was 109.5 mg/g and was reached at pH(i) 5. Under these circumstances Ni(II) and Pb(II) uptake capacities were 55.9 mg Ni/g and 53.6 mg Pb/g, respectively.
Subject Keywords
Heavy-metals
,
Saccharomyces-cerevisiae
,
Aqueous-solutions
,
Removal
,
Biomass
,
Mechanisms
,
Adsorption
,
Effluents
,
Recovery
,
Copper
URI
https://hdl.handle.net/11511/53683
Journal
WATER SA
Collections
Department of Environmental Engineering, Article