Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Operator Splitting of the KdV-Burgers Type Equation with Fast and Slow Dynamics
Date
2010-11-27
Author
Karasözen, Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
192
views
0
downloads
Cite This
The Korteweg de Vries-Burgers (KdV-Burgers) type equation arising from the discretization of the viscous Burgers equation with fast dispersion and slow diffusion is solved using operator splitting. The dispersive and diffusive parts are discretized in space by second order conservative finite differences. The resulting system of ordinary differential equations are composed using the time reversible Strang splitting. The numerical results reveal that the periodicity of the solutions and the invariants of the KdV-Burgers equation are well preserved.
Subject Keywords
Splitting methods
,
Finite differences
,
Fast-slow systems
URI
https://hdl.handle.net/11511/53691
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
Intrusive and data-driven reduced order modelling of the rotating thermal shallow water equation
Yıldız, Süleyman; Karasözen, Bülent; Uzunca, Murat (2022-05-15)
In this paper, we investigate projection-based intrusive and data-driven model order reduction in numerical simulation of rotating thermal shallow water equation (RTSWE) in parametric and non-parametric form. Discretization of the RTSWE in space with centered finite differences leads to Hamiltonian system of ordinary differential equations with linear and quadratic terms. The full-order model (FOM) is obtained by applying linearly implicit Kahan's method in time. Applying proper orthogonal decomposition wit...
SECOND ORDER NUMERICAL METHODS FOR NAVIER-STOKES AND DARCY-BRINKMAN EQUATIONS
DEMİR, Medine; Kaya Merdan, Songül; Bayram Çıbık, Aytekin; Department of Mathematics (2022-6-28)
In this thesis, second-order, efficient and reliable numerical stabilization methods are considered for approximating solutions to the incompressible, viscous fluid flow driven by the Navier-Stokes equations and for the Darcy-Brinkman equations driven by double-diffusive convection. The standard Galerkin finite element method remains insufficient for accurately solving these complex nonlinear equations that creates some problems such as numerical instabilities and unphysical oscillations in the solution. A ...
Fast-Multipole-Method Solutions of New Potential Integral Equations
Gür, Uğur Meriç; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-09-27)
A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both imp...
Generalized Hybrid Surface Integral Equations for Finite Periodic Perfectly Conducting Objects
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-01-01)
Hybrid formulations that are based on simultaneous applications of diversely weighted electric-field integral equation (EFIE) and magnetic-field integral equation (MFIE) on periodic but finite structures involving perfectly conducting surfaces are presented. Formulations are particularly designed for closed conductors by considering the unit cells of periodic structures as sample problems for optimizing EFIE and MFIE weights in selected regions. Three-region hybrid formulations, which are designed by geneti...
Modified Superformula Contours Optimized via Genetic Algorithms for Exponentially Converging 2D Solutions of MFIE
Guler, Sadri; Onol, Can; Ergül, Özgür Salih; Sever, Emrah; Dikmen, Fatih; Tuchkin, Yury A. (2017-05-25)
An infinitely smooth parametrical representation with derivatives of all orders is used, resulting into exponentially converging solutions of magnetic field integral equation (MFIE) in 2D either for TM or TE polarized excitations. A version of superformula modified for this purpose has been subject to optimization of its parameters via genetic algorithms to provide smooth parameterization for a desired boundary in two-dimensional problems. The organization of the MFIE kernel and convergence of the solution ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Karasözen, “Operator Splitting of the KdV-Burgers Type Equation with Fast and Slow Dynamics,” 2010, vol. 1309, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53691.