Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
MODELING THE COMPLIANCE OF A VARIABLE STIFFNESS C-SHAPED LEG USING CASTIGLIANO'S THEOREM
Date
2010-08-18
Author
Ünlü Aydın, Yücel
Yazıcıoğlu, Yiğit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
398
views
0
downloads
Cite This
This paper discusses the application of Castigliano's Theorem to a half circular beam intended for use as a shaped, tunable, passively compliant robot leg. We present closed-form equations characterizing the deflection behavior of the beam (whose compliance properties vary along the leg) under appropriate loads. We compare the accuracy of this analytical representation to that of a Pseudo Rigid Body (PRB) approximation in predicting the data obtained by measuring the deflection of a physical half-circular beam under the application of known static loads. We briefly discuss the further application of the new model for solving the dynamic equations of a hexapod robot with a C-shaped leg.
Subject Keywords
Modeling
,
Stiffness
,
Theorems (Mathematics)
,
Deflection
,
Robots
,
Stress
,
Approximation
,
Equations of motion
URI
https://hdl.handle.net/11511/53750
Collections
Department of Turkish Language, Conference / Seminar
Suggestions
OpenMETU
Core
The effects of tine coupling and geometrical imperfections on the response of DETF resonators
Azgın, Kıvanç (IOP Publishing, 2013-12-01)
This paper presents a two-degree-of-freedom analytical model for the electromechanical response of double ended tuning fork (DETF) force sensors. The model describes the mechanical interaction between the tines and allows investigation of the effect of a number of asymmetries, in tine stiffness, mass, electromechanical parameters and load sharing between the tines. These asymmetries are introduced during fabrication (e. g., as a result of undercut) and are impossible to completely eliminate in a practical d...
Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector
Aad, G.; et. al. (2012-09-14)
This paper presents a study of the possible ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at center-of-mass energies of root s = 900 GeV and root s...
Solution of the dynamic frictional contact problem between a functionally graded coating and a moving cylindrical punch
BALCI, MEHMET NURULLAH; Dağ, Serkan (Elsevier BV, 2019-04-01)
This paper presents an analytical method developed to investigate the dynamic frictional contact mechanics between a functionally graded coating and a rigid moving cylindrical punch. Governing partial differential equations of elastodynamics are solved analytically by applying Galilean and Fourier transformations. Interface continuity and boundary conditions are written and contact problem is then reduced to a singular integral equation of the second kind. The singular integral equation is solved numericall...
A constitutive model for finite deformation of amorphous polymers
FLEISCHHAUER, R.; Dal, Hüsnü; KALISKE, M.; SCHNEIDER, K. (2012-12-01)
The paper introduces a three-dimensional constitutive model for the mechanical behavior of amorphous polymers, thermosets and thermoplastics. The approach is formulated in terms of finite deformations, appropriate for glassy polymers. The rheology of the model consists of a Langevin-type free energy function for the energy storage due to molecular alignment connected in parallel to a Maxwell element with a viscoplastic dashpot. The model proves successful for the constitutive description of glassy polymers ...
Modeling of inelastic behavior of curved members with a mixed formulation beam element
Sarıtaş, Afşin (Elsevier BV, 2009-04-01)
The curved beam element in this paper is based on Hu-Washizu variational principle. The nonlinear response of the element arises from the integration of stress-strain relations over several control sections along the element length. The finite element approximation for the beam uses shape functions for stress resultants that satisfy equilibrium and discontinuous strains along the beam. No approximation for the beam displacement field is necessary in the formulation. The proposed element is free from membran...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Ünlü Aydın and Y. Yazıcıoğlu, “MODELING THE COMPLIANCE OF A VARIABLE STIFFNESS C-SHAPED LEG USING CASTIGLIANO’S THEOREM,” 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53750.