ON PARAMETRIC LOWER BOUNDS FOR DISCRETE-TIME FILTERING

2016-03-25
Fritsche, Carsten
Orguner, Umut
Gustafsson, Fredrik
Parametric Cramer-Rao lower bounds (CRLBs) are given for discrete-time systems with non-zero process noise. Recursive expressions for the conditional bias and mean-square-error (MSE) (given a specific state sequence) are obtained for Kalman filter estimating the states of a linear Gaussian system. It is discussed that Kalman filter is conditionally biased with a non-zero process noise realization in the given state sequence. Recursive parametric CRLBs are obtained for biased estimators for linear state estimators of linear Gaussian systems. Simulation studies are conducted where it is shown that Kalman filter is not an efficient estimator in a conditional sense.

Suggestions

Pseudospin and spin symmetry in the Dirac equation with Woods-Saxon potential and tensor potential
AYDOĞDU, OKTAY; Sever, Ramazan (2010-01-01)
The Dirac equation is solved approximately for the Woods-Saxon potential and a tensor potential with the arbitrary spin-orbit coupling quantum number kappa under pseudospin and spin symmetry. The energy eigenvalues and the Dirac spinors are obtained in terms of hypergeometric functions. The energy eigenvalues are calculated numerically.
Continuous-time nonlinear estimation filters using UKF-aided gaussian sum representations
Gökçe, Murat; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2014)
A nonlinear filtering method is developed for continuous-time nonlinear systems with observations/measurements carried out in discrete-time by means of UKFaided Gaussian sum representations. The time evolution of the probability density function (pdf) of the state variables (or the a priori pdf) is approximated by solving the Fokker-Planck equation numerically using Euler’s method. At every Euler step, the values of the a priori pdf are evaluated at deterministic sample points. These values are used with Ga...
On plateaued functions, linear structures and permutation polynomials
Mesnager, Sihem; Kaytancı, Kübra; Özbudak, Ferruh (2019-01-01)
We obtain concrete upper bounds on the algebraic immunity of a class of highly nonlinear plateaued functions without linear structures than the one was given recently in 2017, Cusick. Moreover, we extend Cusick’s class to a much bigger explicit class and we show that our class has better algebraic immunity by an explicit example. We also give a new notion of linear translator, which includes the Frobenius linear translator given in 2018, Cepak, Pasalic and Muratović-Ribić as a special case. We find some app...
A new real-time suboptimum filtering and prediction scheme for general nonlinear discrete dynamic systems with Gaussian or non-Gaussian noise
Demirbaş, Kerim (Informa UK Limited, 2011-01-01)
A new suboptimum state filtering and prediction scheme is proposed for nonlinear discrete dynamic systems with Gaussian or non-Gaussian disturbance and observation noises. This scheme is an online estimation scheme for real-time applications. Furthermore, this scheme is very suitable for state estimation under either constraints imposed on estimates or missing observations. State and observation models can be any nonlinear functions of the states, disturbance and observation noises as long as noise samples ...
Investigation of decoupling techniques for linear and nonlinear systems
Kalaycıoğlu, Taner; Özgüven, Hasan Nevzat; Department of Mechanical Engineering (2018)
Structural coupling methods are widely used in predicting dynamics of coupled systems. In this study, the reverse problem, i.e. predicting the dynamic behavior of a particular subsystem from the knowledge of the dynamics of the overall system and of all the other subsystems, is studied. This problem arises when a substructure cannot be measured separately, but only when coupled to neighboring substructures. The dynamic decoupling problem of coupled linear structures is well investigated in literature. Howev...
Citation Formats
C. Fritsche, U. Orguner, and F. Gustafsson, “ON PARAMETRIC LOWER BOUNDS FOR DISCRETE-TIME FILTERING,” 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53898.