Subsurface Silicon Processing by Microsphere Focusing of Ultrafast Infrared Laser

İdikut, Fırat
Seyedpour, S. Esmaeilzad
Bek, Alpan
Attention on applications of femtosecond lasers in semiconductor materials processing is ever growing. There has been an increasing research momentum especially towards multi-photon absorption based silicon (Si) processing with infrared lasers in the last decade. Since Si is transparent at wavelengths >1.1 mu m, the processing inside Si is triggered by the nonlinear optical phenomenon of two or more photon absorption which requires laser amplitude to reach and pass beyond threshold conditions. A method that utilizes back-reflection at the Si-air interface was developed and demonstrated to be useful for subsurface processing of Si at the micro-scale. In previous studies, pixels of such processed regions were limited to 5-10 mu m size despite use of high numerical aperture lenses due to strong refraction of light in Si. In order to deem the laser processing of Si useful for photonic applications, pixel size needed to be reduced down to a micron or below. In this work, we demonstrate subsurface modification of Si using microsphere based focusing of a 1.5 mu m wavelength ultrafast laser pulses in Si.


Low-cost uncooled infrared detector arrays in standard CMOS
Eminoglu, S; Tanrikulu, MY; Akın, Tayfun (2003-04-25)
This paper reports the development of a low-cost 128 x 128 uncooled infrared focal plane array (FPA) based on suspended and thermally isolated CMOS p(+)-active/n-well diodes. The FPA is fabricated using a standard 0.35 mum CMOS process followed by simple post-CMOS bulk micromachining that does not require any critical lithography or complicated deposition steps; and therefore, the cost of the uncooled FPA is almost equal to the cost of the CMOS chip. The post-CMOS fabrication steps include an RIE etching to...
Subsonic and intersonic dynamic crack growth in unidirectional composites
Çöker, Demirkan; Huang, Yonggang Y. (ASME, 1999-12-01)
Some recent experimental observations of highly dynamic crack growth events in thick unidirectional graphite fiber-reinforced epoxy matrix composite plates are presented. The composite plates were symmetrically (mode-I) and asymmetrically (mode-II) loaded in a one-point bend configuration with an edge pre-notch machined in the fiber direction. The lateral shearing interferometric technique of coherent gradient sensing (CGS) was used in conjunction with high-speed photography. Symmetric, mode-I cracks initia...
Microstructure development in nickel zinc ferrites
Okatan, Mahmut Barış; Timuçin, Muharrem; Department of Metallurgical and Materials Engineering (2005)
Nickel zinc ferrites (NZF) have been considered as one of the basic components in high frequency electromagnetic applications especially in the field of telecommunications. In the present study, the aim was to produce high quality nickel zinc ferrite ceramics at low soaking temperatures. For this purpose, conventional ceramic manufacturing method based on mixed oxide precursors was followed using calcium fluoride, CaF2, as sintering additive. During the sintering studies, it was noticed that both the micros...
Dynamical electrical tuning of a silicon microsphere: used for spectral mapping of the optical resonances
Yüce, Emre; Thursby, Graham J.; Serpenguzel, Ali (2014-09-20)
In this work, electrical square pulses at various duty cycles are applied to a silicon microsphere resonator in order to continuously tune the refractive index of a silicon microsphere and to map the optical resonance in the time domain. A continuous-wave semiconductor diode laser operating in the L-band is used for the excitation of the silicon microsphere optical resonances. The 90 degrees transverse magnetically polarized elastic scattering signal is used to monitor the silicon microsphere resonances. We...
An Automated calibration set up for laser beam positioning systems in visual inspection applications
Kiraz, Ercan; Dölen, Melik; Department of Mechanical Engineering (2013)
In this study, a calibration setup for laser beam positioning systems used in visual inspection applications in industry is designed and manufactured. The laser positioning systems generate movable parallel laser lines on the projection surface. There are several translational and angular error sources affecting the positioning accuracy of the laser lines on the projection surface. Especially, since the laser line positioning error caused by angular error sources increases with the distance between the lase...
Citation Formats
F. İdikut, S. E. Seyedpour, and A. Bek, “Subsurface Silicon Processing by Microsphere Focusing of Ultrafast Infrared Laser,” 2019, Accessed: 00, 2020. [Online]. Available: