Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Subsurface Silicon Processing by Microsphere Focusing of Ultrafast Infrared Laser
Date
2019-01-01
Author
İdikut, Fırat
Borra, M. Zolfaghari
Seyedpour, S. Esmaeilzad
Bek, Alpan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
Attention on applications of femtosecond lasers in semiconductor materials processing is ever growing. There has been an increasing research momentum especially towards multi-photon absorption based silicon (Si) processing with infrared lasers in the last decade. Since Si is transparent at wavelengths >1.1 mu m, the processing inside Si is triggered by the nonlinear optical phenomenon of two or more photon absorption which requires laser amplitude to reach and pass beyond threshold conditions. A method that utilizes back-reflection at the Si-air interface was developed and demonstrated to be useful for subsurface processing of Si at the micro-scale. In previous studies, pixels of such processed regions were limited to 5-10 mu m size despite use of high numerical aperture lenses due to strong refraction of light in Si. In order to deem the laser processing of Si useful for photonic applications, pixel size needed to be reduced down to a micron or below. In this work, we demonstrate subsurface modification of Si using microsphere based focusing of a 1.5 mu m wavelength ultrafast laser pulses in Si.
Subject Keywords
Silicon
,
Laser
,
Infrared
,
Ultrafast
,
Microsphere
,
Multiphoton absorption
URI
https://hdl.handle.net/11511/54053
Collections
Department of Physics, Conference / Seminar