Functional Mesh Learning for Pattern Analysis of Cognitive Processes

Firat, Orhan
Ozay, Mete
Onal, Itir
Yarman Vural, Fatoş Tunay
We propose a statistical learning model for classifying cognitive processes based on distributed patterns of neural activation in the brain, acquired via functional magnetic resonance imaging (fMRI). In the proposed learning machine, local meshes are formed around each voxel. The distance between voxels in the mesh is determined by using functional neighborhood concept. In order to define functional neighborhood, the similarities between the time series recorded for voxels are measured and functional connectivity matrices are constructed. Then, the local mesh for each voxel is formed by including the functionally closest neighboring voxels in the mesh. The relationship between the voxels within a mesh is estimated by using a linear regression model. These relationship vectors, called Functional Connectivity aware Local Relational Features (FC-LRF) are then used to train a statistical learning machine. The proposed method was tested on a recognition memory experiment, including data pertaining to encoding and retrieval of words belonging to ten different semantic categories. Two popular classifiers, namely k-Nearest Neighbor and Support Vector Machine, are trained in order to predict the semantic category of the item being retrieved, based on activation patterns during encoding. The classification performance of the Functional Mesh Learning model, which range in 62-68% is superior to the classical multi-voxel pattern analysis (MVPA) methods, which range in 40-48%, for ten semantic categories.
12th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI CC)


Representation of Cognitive Processes Using the Minimum Spanning Tree of Local Meshes
Firat, Orhan; Ozay, Mete; Onal, Itir; GİLLAM, İLKE; Yarman Vural, Fatoş Tunay (2013-07-07)
A new graphical model called Cognitive Process Graph (CPG) is proposed, for classifying cognitive processes based on neural activation patterns which are acquired via functional Magnetic Resonance Imaging (fMRI) in brain. In the CPG, first local meshes are formed around each voxel. Second, the relationships between a voxel and its neighbors in a local mesh, which are estimated by using a linear regression model, are used to form the edges among the voxels (graph nodes) in the CPG. Then, a minimum spanning t...
A Hierarchical representation and decoding of fMRI data by partitioning a brain network
Moğultay, Hazal; Yarman Vural, Fatoş Tunay; Department of Computer Engineering (2017)
In this study, we propose a hierarchical network representation of human brain extracted from fMRI data. This representation consists of two levels. In the first level, we form a network among the voxels, smallest building block of fMRI data. In the second level, we define a set of supervoxels by partitioning the first level network into a set of subgraphs, which are assu med to represent homogeneous brain regions with respect to a predefined criteria. For this purpose, we develop a novel brain parcellation...
Mesh Learning for Object Classification using fMRI Measurements
Ekmekci, Ömer; Ozay, Mete; Oztekin, Ilke; GİLLAM, İLKE; Oztekin, Uygar (2013-09-18)
Machine learning algorithms have been widely used as reliable methods for modeling and classifying cognitive processes using functional Magnetic Resonance Imaging (fMRI) data. In this study, we aim to classify fMRI measurements recorded during an object recognition experiment. Previous studies focus on Multi Voxel Pattern Analysis (MVPA) which feeds a set of active voxels in a concatenated vector form to a machine learning algorithm to train and classify the cognitive processes. In most of the MVPA methods,...
Gunal Degirmendereli, Gonul; Yarman Vural, Fatoş Tunay; Department of Cognitive Sciences (2022-2)
In this thesis, we propose an information theoretic method for the representation of human brain activity to decode mental states of a high-order cognitive process, complex problem solving (CPS) using functional magnetic resonance images. First, we aim to identify the active regions and represent underlying cognitive states by measuring the information content of anatomical regions for expert and novice problem solvers during the main phases of problem solving, namely planning and execution. Based on Shann...
An Information Theoretic Approach to Classify Cognitive States Using fMRI
Onal, Itir; Ozay, Mete; Firat, Orhan; GİLLAM, İLKE; Yarman Vural, Fatoş Tunay (2013-11-13)
In this study, an information theoretic approach is proposed to model brain connectivity during a cognitive processing task, measured by functional Magnetic Resonance Imaging (fMRI). For this purpose, a local mesh of varying size is formed around each voxel. The arc weights of each mesh are estimated using a linear regression model by minimizing the squared error. Then, the optimal mesh size for each sample, that represents the information distribution in the brain, is estimated by minimizing various inform...
Citation Formats
O. Firat, M. Ozay, I. Onal, İ. GİLLAM, and F. T. Yarman Vural, “Functional Mesh Learning for Pattern Analysis of Cognitive Processes,” presented at the 12th IEEE International Conference on Cognitive Informatics and Cognitive Computing (ICCI CC), Fordham Univ, New York, NY, 2013, Accessed: 00, 2020. [Online]. Available: