Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
STREAMLINE UPWIND/PETROV GALERKIN SOLUTION OF OPTIMAL CONTROL PROBLEMS GOVERNED BY TIME DEPENDENT DIFFUSION-CONVECTION-REACTION EQUATIONS
Date
2017-01-01
Author
Akman, T.
Karasözen, Bülent
Kanar-Seymen, Z.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
0
views
0
downloads
The streamline upwind/Petrov Galerkin (SUPG) finite element method is studied for distributed optimal control problems governed by unsteady diffusion-convection-reaction equations with control constraints. We derive stability and convergence estimates for fully-discrete state, adjoint and control and discuss the choice of the stabilization parameter by applying backward Euler method in time. We show that by balancing the error terms in the convection dominated regime, optimal convergence rates can be obtained. The numerical results confirm the theoretically observed convergence rates.
Subject Keywords
Optimal control problems
,
A priori error estimates
,
Finite element elements
,
Unsteady diffusion-convection-reaction equations
URI
https://hdl.handle.net/11511/54100
Journal
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS
Collections
Graduate School of Applied Mathematics, Article