A new approach to mathematical water quality modeling in reservoirs: Neural networks

Karul, C
Soyupak, S
Germen, E
Neural Networks are becoming more and more valuable tools for system modeling and function approximation as computing power of microcomputers increase. Modeling of complex ecological systems such as reservoir limnology is very difficult since the ecological interactions within a reservoir are difficult to define mathematically and are usually system specific. To illustrate the potential use of Neural Networks in ecological modeling, a software was developed to train the data from Keban Dam Reservoir by backpropogation algorithm. Although the available data was insufficient and irregular, the system was trained successfully to estimate the chlorophyll-a concentration given the time, total suspended solids, total phosphorus, dissolved inorganic nitrogen and secchi depth. The model was quite successful in estimating the output with an average error of 0.01268 to 8.11612x10(-8) percent for the 5 sampling stations.


Case studies on the use of neural networks in eutrophication modeling
Karul, C; Soyupak, S; Cilesiz, AF; Akbay, N; Germen, E (2000-10-30)
Artificial neural networks are becoming more and more common to be used in development of prediction models for complex systems as the theory behind them develops and the processing power of computers increase. A three layer Levenberg-Marquardt feedforward learning algorithm was used to model the eutrophication process in three water bodies of Turkey (Keban Dam Reservoir, Mogan and Eymir Lakes). Despite the very complex and peculiar nature of Keban Dam, a relatively good correlation (correlation coefficient...
Representing temporal knowledge in connectionist expert systems
Alpaslan, Ferda Nur (1996-09-27)
This paper introduces a new temporal neural networks model which can be used in connectionist expert systems. Also, a Variation of backpropagation algorithm, called the temporal feedforward backpropagation algorithm is introduced as a method for training the neural network. The algorithm was tested using training examples extracted from a medical expert system. A series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The experiments indicated that the alg...
A neuro-fuzzy MAR algorithm for temporal rule-based systems
Sisman, NA; Alpaslan, Ferda Nur; Akman, V (1999-08-04)
This paper introduces a new neuro-fuzzy model for constructing a knowledge base of temporal fuzzy rules obtained by the Multivariate Autoregressive (MAR) algorithm. The model described contains two main parts, one for fuzzy-rule extraction and one for the storage of extracted rules. The fuzzy rules are obtained from time series data using the MAR algorithm. Time-series analysis basically deals with tabular data. It interprets the data obtained for making inferences about future behavior of the variables. Fu...
Neural networks with piecewise constant argument and impact activation
Yılmaz, Enes; Akhmet, Marat; Department of Scientific Computing (2011)
This dissertation addresses the new models in mathematical neuroscience: artificial neural networks, which have many similarities with the structure of human brain and the functions of cells by electronic circuits. The networks have been investigated due to their extensive applications in classification of patterns, associative memories, image processing, artificial intelligence, signal processing and optimization problems. These applications depend crucially on the dynamical behaviors of the networks. In t...
A temporal neural network model for constructing connectionist expert system knowledge bases
Alpaslan, Ferda Nur (Elsevier BV, 1996-04-01)
This paper introduces a temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications.
Citation Formats
C. Karul, S. Soyupak, and E. Germen, “A new approach to mathematical water quality modeling in reservoirs: Neural networks,” 1998, vol. 83, p. 689, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/66928.