Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Penetrable Numerical Modeling of Metallic Nanoparticles at Terahertz Frequencies
Date
2018-08-04
Author
İbili, Hande
Guler, S.
Karaosmanoglu, B.
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
Numerical solutions of electromagnetic problems involving nanostructures at terahertz (THz) frequencies are considered. We particularly focus on nanoparticles that are made of typical metals at the lower THz frequencies. Even though the frequency is relatively low, we show that penetrable models are needed for accurately representing electromagnetic characteristics, especially to predict penetrating magnetic fields inside small particles. Due to large permittivity values with negative real parts, stable formulations are needed to obtain equivalent currents and secondary fields. It is shown that the modified combined tangential formulation, which was proposed for plasmonic simulations in wide frequency ranges, provides accurate solutions that are consistent with analytical results for spherical nanoparticles.
Subject Keywords
Integral-equation formulations
,
Electromagnetic scattering
,
Accurate
URI
https://hdl.handle.net/11511/53101
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar