Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
EARTHQUAKE RELIABILITY OF LIFELINE NETWORKS
Date
1994-07-14
Author
Yücemen, Mehmet Semih
Kestel, Sevtap Ayşe
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
140
views
0
downloads
Cite This
Subject Keywords
Construction & Building Technology
,
Engineering
,
Civil
,
Geosciences
,
Geology
URI
https://hdl.handle.net/11511/54635
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Stiffness formulation for nonprismatic beam elements - Discussion
Balkaya, C; Citipitioglu, E (1997-12-01)
Seismic retrofitting of bridges by response modification techniques based on altering bearing fixities
Dicleli, Murat (Informa UK Limited, 2005-07-01)
Feasibility of a proposed seismic retrofitting technique for typical bridges in the Central US has been studied. The retrofitting technique is based on modifying the fixity conditions of the bearings for response modification purposes to eliminate the need for costly retrofitting of substructures. For this purpose, a seismically vulnerable bridge, typical of those in the Central US was selected. Detailed seismic analyses of the bridge were then conducted. It was found that its bearings, wing-walls and pier ...
Seismic behavior of autoclaved aerated concrete low rise buildings with reinforced wall panels
Gökmen, Furkan; Binici, Barış; Canbay, Erdem (Springer Science and Business Media LLC, 2019-07-01)
Reinforced Autoclaved Aerated Concrete (AAC) wall panels are more commonly used to construct load-bearing walls in low-rise prefabricated buildings located in seismic zones. In the scope of this study, the seismic response of buildings constructed with reinforced AAC wall panels was investigated. To this end, an in situ test was conducted on a two-story test building under reversed cyclic displacement excursions. It was determined that the test building could carry a lateral load of 60% more than its weight...
Seismic performance assessment of confined masonry construction at component and structure levels
Erberik, Murat Altuğ; Erkoseoglu, Gulden (Springer Science and Business Media LLC, 2019-02-01)
There are different techniques for masonry construction. Among these, confined masonry (CM) buildings may be regarded as an upgrade for unreinforced masonry (URM) buildings, which is the most common type. In Turkey, URM construction has been popular, especially up to the end of 1980s. These rather old URM buildings constitute a significant percent of the existing building stock. On the other hand, CM construction seems to be rare when compared to its URM counterpart in Turkey. This fact was also reflected i...
Seismic design of lifeline bridge using hybrid seismic isolation
Dicleli, Murat (American Society of Civil Engineers (ASCE), 2002-03-01)
This paper presents the merits of a hybrid seismic isolation system used for the seismic design of a major bridge. The bridge is analyzed for two different arrangements of seismic isolation systems. The first arrangement consists of friction pendulum bearings at all substructure locations; the other incorporates a hybrid system where laminated elastomeric bearings are used at the abutments and friction pendulum bearings at the piers. Analysis results have demonstrated that the hybrid seismic isolation syste...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. S. Yücemen and S. A. Kestel, “EARTHQUAKE RELIABILITY OF LIFELINE NETWORKS,” 1994, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54635.