Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Learning with infinitely many kernels via semi-infinite programming
Date
2008-05-23
Author
Oezoeguer-Akyuez, Suereyya
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
134
views
0
downloads
Cite This
In recent years, learning methods are desirable because of their reliability and efficiency in real-world problems. We propose a novel method to find infinitely many kernel combinations for learning problems with the help of infinite and semi-infinite optimization regarding all elements in kernel space. This will provide to study variations of combinations of kernels when considering heterogeneous data in real-world applications. Looking at all infinitesimally fine convex combinations of the kernels from the infinite kernel set, the margin is maximized subject to an infinite number of constraints with a compact index set and an additional (Riemann-Stieltjes) integral constraint due to the combinations. After a parametrisation in the space of probability measures it becomes semi-infinite. We analyze the conditions which satisfy the Reduction Ansatz and discuss the type of distribution functions of the kernel coefficients within the structure of the constraints and our bilevel optimization problem.
Subject Keywords
Machine teaming
,
Semi-infinite optimization
,
Infinite programming
,
Support vector machines
,
Continuous optimization
,
Data mining
URI
https://hdl.handle.net/11511/54697
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
MODELLING OF KERNEL MACHINES BY INFINITE AND SEMI-INFINITE PROGRAMMING
Ozogur-Akyuz, S.; Weber, Gerhard Wilhelm (2009-06-03)
In Machine Learning (ML) algorithms, one of the crucial issues is the representation of the data. As the data become heterogeneous and large-scale, single kernel methods become insufficient to classify nonlinear data. The finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, we propose a novel method of "infinite" kernel combinations for learning problems with the help of infinite and semi-infinite programming regarding all elements in kernel space. Looking...
Collaborative building control: a conceptual mixed-initiative framework
Topak, Fatih; Pekeriçli, Mehmet Koray (Taylor & Francis, 2021-6-22)
In the last two decades, automation systems have shown advanced developments and are widely adopted for various purposes in many fields. However, automation in buildings has not gained popularity and has a low acceptance level amongst the occupants. Decreased perceived control, ever-changing dynamic human needs, and standardized, one-size-fits-all approach in current automation systems lead to disharmony in human-machine coexistence. Although well-established continuous interaction between building control ...
On numerical optimization theory of infinite kernel learning
Ozogur-Akyuz, S.; Weber, Gerhard Wilhelm (2010-10-01)
In Machine Learning algorithms, one of the crucial issues is the representation of the data. As the given data source become heterogeneous and the data are large-scale, multiple kernel methods help to classify "nonlinear data". Nevertheless, the finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, a novel method of "infinite" kernel combinations is proposed with the help of infinite and semi-infinite programming regarding all elements in kernel space. Look...
Implementing real-time data analytics methods for predictive manufacturing in oil and gas industry : from the perspective of industry 4.0
Yeldan, Yiğit; Pamukçu, M. Teoman.; Department of Science and Technology Policy Studies (2019)
With the recent developments in statistics and computer science, digitalization has become more important for manufacturing companies. Thanks to the progress made in the area of information technologies, it has become possible for all production systems to communicate with each other by transmitting and receiving data digitally in order to manage the decision-making process in the best manner. Several studies suggest that production processes that are based on full automation will be compulsory for companie...
Multi-task Deep Neural Networks in Protein Function Prediction
Rifaioğlu, Ahmet Süreyya; Doğan, Tunca; Martin, Maria Jesus; Atalay, Rengül; Atalay, Mehmet Volkan (2017-05-01)
In recent years, deep learning algorithms have outperformed the state-of-the art methods in several areas thanks to the efficient methods for training and for preventing overfitting, advancement in computer hardware, the availability of vast amount data. The high performance of multi-task deep neural networks in drug discovery has attracted the attention to deep learning algorithms in bioinformatics area. Here, we proposed a hierarchical multi-task deep neural network architecture based on Gene Ontology (GO...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Oezoeguer-Akyuez and G. W. Weber, “Learning with infinitely many kernels via semi-infinite programming,” 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54697.