Deconfinement at N > 2: SU(N) Georgi-Glashow model in 2+1 dimensions

Kogan, II
Tekin, Bayram
Kovner, A
We analyse the deconfining phase transition in the SU(N) Georgi-Glashow model in 2 + 1 dimensions. We show that the phase transition is second order for any N, and the universality class is different from the Z(N) invariant Villain model. At large N the conformal theory describing the fixed point is a deformed SU(N)(1) WZNW model which has N - 1 massless fields. It is therefore likely that its self-dual infrared fixed point is described by the Fateev-Zamolodchikov theory of Z(N) parafermions.


Deconfining phase transition in 2+1 D: the Georgi-Glashow model
Dunne, G; Kogan, II; Kovner, A; Tekin, Bayram (2001-01-01)
We analyze the finite temperature deconfining phase transition in (2 +1)-dimensional Georgi-Glashow model. We show explicitly that the transition is due to the restoration of the magnetic Z(2) symmetry and that it is in the Ising universality class. We find that neglecting effects of the charged W bosons leads to incorrect predictions for the value of the critical temperature and the universality class of the transition, as well as for various correlation functions in the high temperature phase. We derive t...
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Magnetic symmetries and vortices in Chern-Simons theories
Dunne, G; Kovner, A; Tekin, Bayram (2001-01-15)
We study the locality properties of the vortex operators in compact U(1) Maxwell-Chern-Simons and SU(N) Yang-Mills-Chem-Simons theories in 2+1 dimensions. We find that these theories do admit local vortex operators and thus in the UV regularized versions should contain stable magnetic vortices. In the continuum limit however the energy of these vortex excitations generically is logarithmically UV divergent. Nevertheless the classical analysis shows that at small values of the CS coefficient kappa the vortic...
Conformal black hole solutions of axidilaton gravity in D dimensions
Cebeci, H; Dereli, T (2002-02-15)
Static, spherically symmetric solutions of axidilaton gravity in D dimensions are given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant omega and an axion-dilaton coupling parameter k. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter family of black hole solutions in the scale-invariant limit.
Conformal symmetry in field theory
Huyal, Ulaş; Tekin, Bayram; Department of Physics (2011)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
Citation Formats
I. Kogan, B. Tekin, and A. Kovner, “Deconfinement at N > 2: SU(N) Georgi-Glashow model in 2+1 dimensions,” JOURNAL OF HIGH ENERGY PHYSICS, pp. 0–0, 2001, Accessed: 00, 2020. [Online]. Available: