Conformal symmetry in field theory

Huyal, Ulaş
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.


Dual Killing-Yano symmetry and multipole moments in electromagnetism and mechanics of continua
Baleanu, D; Dubovik, VM; Misicu, S (1999-10-01)
In this work we introduce the Killing-Yano symmetry on the phase space and we investigate the symplectic structure on the space of Killing-Yano tensors. We perform the detailed analyze of the n-dimensional flat space and the Riemaniann manifolds with constant scalar curvature. We investigate the form of some multipole tensors, which. arise in the expansion of a system of charges and currents, in terms of second-order Killing-Yano tensors in the phase space of classical mechanics. We find some relations betw...
Conformal black hole solutions of axidilaton gravity in D dimensions
Cebeci, H; Dereli, T (2002-02-15)
Static, spherically symmetric solutions of axidilaton gravity in D dimensions are given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant omega and an axion-dilaton coupling parameter k. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter family of black hole solutions in the scale-invariant limit.
Quantum mechanics on curved hypersurfaces
Olpak, Mehmet Ali; Tekin, Bayram; Department of Physics (2010)
In this work, Schrödinger and Dirac equations will be examined in geometries that confine the particles to hypersurfaces. For this purpose, two methods will be considered. The first method is the thin layer method which relies on explicit use of geometrical relations and the squeezing of a certain coordinate of space (or spacetime). The second is Dirac’s quantization procedure involving the modification of canonical quantization making use of the geometrical constraints. For the Dirac equation, only the fir...
A physical model for dimensional reduction and its effects on the observable parameters of the universe
Karaca, Koray; Bayın, Selçuk; Department of Physics (2005)
In this thesis, assuming that higher spatial dimensions existed only during the inflationary prematter phases of the universe, we construct a (1+D)-dimensional (D>3), nonsingular, homogeneous and isotropic Friedmann model for dimensional reduction. In this model, dimensional reduction occurs in the form of a phase transition that follows from a purely thermodynamical consideration that the universe heats up during the inflationary prematter phases. When the temperature reaches its Planck value Tpl,D, which ...
3+1 orthogonal and conformal decomposition of the einstein equation and the adm formalism for general relativity
Dengiz, Suat; Tekin, Bayram; Department of Physics (2011)
In this work, two particular orthogonal and conformal decompositions of the 3+1 dimensional Einstein equation and Arnowitt-Deser-Misner (ADM) formalism for general relativity are obtained. In order to do these, the 3+1 foliation of the four-dimensional spacetime, the fundamental conformal transformations and the Hamiltonian form of general relativity that leads to the ADM formalism, defined for the conserved quantities of the hypersurfaces of the globally-hyperbolic asymptotically flat spacetimes, are recons...
Citation Formats
U. Huyal, “Conformal symmetry in field theory,” M.S. - Master of Science, Middle East Technical University, 2011.