STUDIES ON CONTACT-LENS MATERIALS

1991-02-01
ALYANAK, H
AKSOY, S
Hasırcı, Nesrin
The development of plastics with the optical properties of glass led promptly to their use as contact lenses and intra-ocular lenses to rectify certain visual defects. Research to improve these polymeric materials is continuous but there is not much in the literature since most of the findings are patented.
INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS

Suggestions

Analytical Fresnel imaging models for photon sieves
Öktem, Sevinç Figen; Davila, Joseph M. (The Optical Society, 2018-11-21)
Photon sieves are a fairly new class of diffractive lenses that open unprecedented possibilities for high resolution imaging and spectroscopy, especially at short wavelengths such as UV and x-rays. In this paper, we model and analyze the image formation process of photon sieves using Fourier optics. We derive closed-form Fresnel imaging models that relate an input object to the image formed by a photon sieve system, both for coherent and incoherent illumination. These analytical models also provide a closed...
3D-graphene-laser patterned p-type silicon Schottky diode
Orhan, Elif Oz; Efil, Esra; Bayram, Ozkan; Kaymak, Nuriye; Berberoğlu, Halil; Candemir, Ozun; Pavlov, Ihor; Ocak, Sema Bilge (Elsevier BV, 2021-01-01)
© 2020 Elsevier LtdThe influence of the laser patterning (LP) process on the quality of graphene (Gr) film and Schottky diode characteristics was researched in this study. First of all, p-type silicon (Si) was patterned by homemade femtosecond laser source. To compare the resulting effect, non-patterned n-Si and p-Si were used as substrates. To achieve vertically oriented three-dimensional (3D) Gr nanosheets (VGNs) onto the laser patterned p-type Si, non-patterned n-Si, and p-Si substrates, we used Radio-Fr...
Analysis of narcissus effect in infrared optical systems with cooled detectors
Aslan, Serhat Hasan; Yerli, Sinan Kaan; Department of Physics (2022-7)
Infrared lens design has many aspects similar to visible lens design. Optical aberration types and calculations, tolerancing procedures are applied in the same way in infrared lens design as in the visible lens design. However, there are many design aspects in infrared lens which are very different from visible lens design. One of these aspects is the narcissus effect in infrared lenses utilizing cooled infrared detectors. Narcissus effect is a very well known phenomenon in infrared lens with cooled detecto...
Nano-scale phase separation and glass forming ability of iron-boron based metallic glasses
Aykol, Muratahan; Akdeniz, Mahmut Vedat; Department of Metallurgical and Materials Engineering (2008)
This study is pertinent to setting a connection between glass forming ability (GFA) and topology of Fe-B based metallic glasses by combining intimate investigations on spatial atomic arrangements conducted via solid computer simulations with experimentations on high GFA bulk metallic glasses. In order to construct a theoretical framework, the nano-scale phase separation encountered in metallic glasses is investigated for amorphous Fe80B20 and Fe83B17 alloys via Monte Carlo equilibration and reverse Monte Ca...
Integrated optical modulators with zero index metamaterials based on photonic crystal slab waveguides
Yildirim, Mustafa; GÖVDELİ, ALPEREN; Kocaman, Serdar (2019-01-01)
A novel integrated optical modulator design is presented using zero index metamaterial-based Mach-Zehnder Interferometer with photonic crystal phase shifters. The phase modulation relies on the shift between the photonic bandgaps having non-zero and zero effective refractive indices. A small change in the bulk index results in an effective index change between the arms of the MZI due to the disturbance of the band structure. Thus, such a structure provides a new approach for phase modulation on integrated o...
Citation Formats
H. ALYANAK, S. AKSOY, and N. Hasırcı, “STUDIES ON CONTACT-LENS MATERIALS,” INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, pp. 116–121, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54820.