Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Analytical Fresnel imaging models for photon sieves
Download
10.1364OE.26.032259.pdf
Date
2018-11-21
Author
Öktem, Sevinç Figen
Davila, Joseph M.
Metadata
Show full item record
Item Usage Stats
236
views
345
downloads
Cite This
Photon sieves are a fairly new class of diffractive lenses that open unprecedented possibilities for high resolution imaging and spectroscopy, especially at short wavelengths such as UV and x-rays. In this paper, we model and analyze the image formation process of photon sieves using Fourier optics. We derive closed-form Fresnel imaging models that relate an input object to the image formed by a photon sieve system, both for coherent and incoherent illumination. These analytical models also provide a closed-form expression for the point-spread function of the system for both in-focus and out-of-focus cases. All the formulas are expressed in terms of Fourier transforms and convolutions, which enable easy interpretation as well as fast computation. The derived analytical models provide a unified framework to effectively develop new imaging modalities enabled by diffractive lenses and analyze their imaging capabilities for different design configurations, prior to physical production. To illustrate their utility and versatility, the derived formulas are applied to several important special cases such as photon sieves with circular holes and pixelated diffractive lenses generated by SLM-type devices. The analytical image formation models presented in this paper provide a generalizable and powerful means for effective analysis and simulation of any imaging system with a diffractive lens, including Fresnel zone plates, Fresnel phase plates, and other modified Fresnel lenses and mask-like patterns such as coded apertures. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Subject Keywords
Ocusing analysis
,
Zone plates
,
Field
,
Design
,
Lenses
URI
https://hdl.handle.net/11511/28427
Journal
Optics Express
DOI
https://doi.org/10.1364/oe.26.032259
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Efficient computation of 2D point-spread functions for diffractive lenses
Ayazgok, Suleyman; Öktem, Sevinç Figen (The Optical Society, 2020-01-10)
Diffractive lenses, such as Fresnel zone plates, photon sieves, and their modified versions, have been of significant recent interest in high-resolution imaging applications. As the advent of diffractive lens systems with different configurations expands, the fast and accurate simulation of these systems becomes crucial for both the design and image reconstruction tasks. Here we present a fast and accurate method for computing the 2D point-spread function (PSF) of an arbitrary diffractive lens. The method i...
High resolution computational spectral imaging with photon sieves
Öktem, Sevinç Figen; Davila, Joseph (2014-10-27)
Photon sieves, modifications of Fresnel zone plates, are a new class of diffractive image forming devices that open up new possibilities for high resolution imaging and spectroscopy, especially at UV and x-ray regime. In this paper, we develop a novel computational photon sieve imaging modality that enables high-resolution spectral imaging. For the spatially incoherent illumination, we study the problem of recovering the individual spectral images from the superimposed and blurred measurements of the propos...
Surface-enhanced Raman scattering spectroscopy via gold nanostars
Nalbant Esentürk, Emren (Wiley, 2009-01-01)
Anisotropic metallic nanoparticles (NPs) have unique optical properties, which lend them to applications such as surface-enhanced Raman scattering (SERS) spectroscopy. Star-shaped gold (Au) NPs were prepared in aqueous solutions by the seed-mediated growth method and tested for Raman enhancement using 2-mercaptopyridine (2-MPy) and crystal violet (CV) probing molecules. For both molecules, the SERS activity of the nanostars was notably stronger than that of the spherical Au NPs of similar size. The Raman en...
High performance short wavelength infrared focal plane arrays
Çırçır, Kübra; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2017)
Short Wavelength Infrared (SWIR) band is desirable for many applications such as night vision, spectroscopy and hyperspectral imaging. Indium Gallium Arsenide (In0.53Ga0.47As) is a suitable material for SWIR photodetectors. This thesis focuses on the investigation of the pixel characteristics of a 15 µm pitch large format (640x512) focal plane array (FPA) with In0.53Ga0.47As absorber and Al0.52In0.48As p-type cap layers as an alternative to the conventional In0.53Ga0.47As detectors utilizing InP as the p-ca...
Electrical impedance tomography using the magnetic field generated by injected currents
Birgul, O; Ider, YZ (1996-11-03)
In 2D EIT imaging, the internal distribution of the injected currents generate a magnetic field in the imaging region which can be measured by magnetic resonance imaging techniques. This magnetic field is perpendicular to the imaging region on the imaging region and it can be used in reconstructing the conductivity distribution inside the imaging region. For this purpose, internal current distribution is found using the finite element method. The magnetic fields due to this current is found using Biot-Savar...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. F. Öktem and J. M. Davila, “Analytical Fresnel imaging models for photon sieves,”
Optics Express
, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28427.