EFFECTS OF PIN FIN SHAPE AND SIZE ON TURBINE BLADE TRAILING EDGE FLOW AND HEAT TRANSFER

2019-01-01
Tuncel, Tugba
Kahveci, Harika Senem
In modern turbine blades, pressure-side cutbacks with film-cooling slots stiffened with lands and pin fins that are embedded in passages are used to cool trailing edges. There are many studies that have investigated these cooling configurations from a thermal perspective, while only a limited number have been concerned with the aerodynamic aspects. This study presents a thorough computational investigation of a film-cooling configuration to determine the optimum combination of shape and size of pin arrays. The analyses are performed to include both internal and external surfaces of the trailing-edge cutback region and the results are evaluated from both aerodynamics and thermal aspects. The internal structure of the configuration studied consists of staggered arrays of pins and airfoil-shaped blockages in front of the slot exits that open into a pressure-side cutback region. The pins used are of circular, elliptical, or airfoil shapes that are rarely studied in such configurations, and of different sizes, resulting in five different models for comparisons. The flow features, pressure losses and heat transfer characteristics inside of the trailing-edge surfaces and in the vicinity of the slots and on the external cutback region are examined. The airfoil-shaped pins are found to decrease the pressure losses in internal flow compared to the other pin shapes of similar size. However, the pin arrays produce minor differences in the velocity contours in the breakout region, resulting in similar pressure loss trends here. The small-sized pins are found to demonstrate slightly higher film-cooling effectiveness on the breakout surface due to lower temperatures at the slot exit. It can be inferred from the results that, since the airfoil-shaped pin reduces the aerodynamic penalty across the internal pin array, performing an optimization on the size of these pins to achieve the desired cooling performance could be a reasonable approach in the design process.
ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY

Suggestions

Design of isolated bridges for adaptive seismic performance using gapped hysteretic damper connections
Dicleli, Murat (null; 2018-08-03)
Hysteretic dampers in bridges with seismically isolated decks are usually coupled with shock transmitters in order to prevent their engagement during thermal displacements of the deck. An alternative design approach is presented in this paper where the dampers are attached to the deck using elongated holes (gaps) which are sized to accommodate the thermal displacements and hence to keep the dampers from being activated during thermal displacements. The gaps are sized based on the expected maximum thermal di...
Design of isolated bridges for multi-level seismic performance using gapped device connections
Dicleli, Murat (2017-10-01)
Experimental investigation of failure mechanism in cross-ply and fabric curved composite laminates
Çevik, Ahmet; Çöker, Demirkan; Department of Aerospace Engineering (2021-8)
Laminated curved-shape composite parts which are used in the spar and ribs in aircraft and wind turbine blades are subjected to high interlaminar tensile and shear stresses. These stresses cause delamination and subsequent reduction in load-carrying capacity. In this study, failure mechanism of cross-ply and fabric curved composite laminates under pure transverse loading are examined experimentally using an in-house designed test fixture. Stress field over the curved beam is obtained with finite element ana...
FAILURE MODE TRANSITION DURING DELAMINATION OF THICK UNIDIRECTIONAL L-SHAPED COMPOSITE LAMINATES
Yavas, Denizhan; Gozluklu, Burak; Çöker, Demirkan (2012-11-15)
Curved composite laminates such as L-beams are frequently used in wind turbine blade structures such as spars and ribs. It is widely assumed that delamination initiates at the curved region of the L-shaped laminate leading to loss of loading carrying capacity. However, as shown in this paper, under certain conditions a second failure mode in thick L-shaped laminates is observed in which a secondary crack initiates at the arm region. Delamination in L-shaped laminates is modeled using a sequential analysis w...
EFFECT OF TURBINE BLADE TIP COOLING CONFIGURATION ON TIP LEAKAGE FLOW AND HEAT TRANSFER
Kahveci, Harika Senem; Sakaoğlu, Sergen (2019-06-17)
The pressure difference between suction and pressure sides of a turbine blade leads to the so-called phenomenon, the tip leakage flow, which most adversely affects the first-stage high- pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are also exposed to extreme thermal conditions requiring the use of tip cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to this leak...
Citation Formats
T. Tuncel and H. S. Kahveci, “EFFECTS OF PIN FIN SHAPE AND SIZE ON TURBINE BLADE TRAILING EDGE FLOW AND HEAT TRANSFER,” ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, pp. 191–207, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54872.