Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimization and dynamics of gene-environment networks with intervals
Date
2007-05-01
Author
Uğur, Ömür
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
232
views
0
downloads
Cite This
There are a few areas of science and technology which are only as challenging, emerging and promising as computational biology. This area is looking for its mathematical foundations, for methods of prediction while guaranteeing robustness, and it is of a rigorous interdisciplinary nature. In this paper, we deepen and extend the approach of learning gene-expression patterns in the framework of gene-environment networks by optimization, especially, generalized semi-infinite optimization (GSIP). With respect to research done previously, we additionally imply the fact that there are measurement errors in the microarray technology and in the environmental data likewise; moreover, the effects which exists among the genes and environmental items can seldom be precisely quantified. Furthermore, we present the well-established matrix algebra for our extended model space, and we indicate further new approaches.
Subject Keywords
Computational biology
,
DNA microarray experiment
,
Environment
,
Measurement errors
,
Gauss-Chebychev approximation
,
Generalized semi-infinite programming
,
Modeling
,
Dynamical system
,
Interval and matrix algebra
,
Inverse problem
,
Forward problem
,
Stability
,
Forward problem
,
Stability
,
Structural stability
URI
https://hdl.handle.net/11511/54890
Journal
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
On generalized semi-infinite optimization of genetic networks
Weber, Gerhard Wilhelm; Tezel, Aysun (2007-07-01)
Since some years, the emerging area of computational biology is looking for its mathematical foundations. Based on modem contributions given to this area, our paper approaches modeling and prediction of gene-expression patterns by optimization theory, with a special emphasis on generalized semi-infinite optimization. Based on experimental data, nonlinear ordinary differential equations are obtained by the optimization of least-squares errors. The genetic process can be investigated by a time-discretization ...
On optimization, dynamics and uncertainty: A tutorial for gene-environment networks
WEBER, G. -W.; Uğur, Ömür; Taylan, P.; TEZEL, AYSUN (2009-05-28)
An emerging research area in computational biology and biotechnology is devoted to mathematical modeling and prediction of gene-expression patterns; to fully understand its foundations requires a mathematical study. This paper surveys and mathematically expands recent advances in modeling and prediction by rigorously introducing the environment and aspects of errors and uncertainty into the genetic context within the framework of matrix and interval arithmetic. Given the data from DNA microarray experiments...
Evaluating the effects of rescaling parameters in large-scale genomic simulations
Kıratlı, Ozan; Birand Özsoy, Ayşegül Ceren; Department of Biology (2016)
Computer simulations are widely used in many subdisciplines of biological sciences, which evolutionary biology. Large-scale genomic simulations, where several kb (kilo base) to several Mb (megabase) genomes are modeled, are being increasingly used. These simulations require high computing power. There are some methods proposed in the literature to decrease the time and memory demand of these simulations. This study is concentrated on one of those methods, where both the number of generation, and the number ...
An algorithmic approach to analyse genetic networks and biological energy production: an introduction and contribution where OR meets biology
Uğur, Ömür; WEBER, G. -W.; WUENSCHIERS, R. (2009-01-01)
An emerging research area in computational biology and biotechnology is devoted to modelling and prediction of gene-expression patterns. In this article, after a short review of recent achievements we deepen and extend them, especially, by emphasizing and analysing the elegant means of matrix algebra. Based on experimental data, ordinary differential equations with nonlinearities on the right-hand side and a generalized treatment of the absolute shift term, representing the environmental effects, are invest...
A Review on Data Mining and Continuous Optimization Applications in Computational Biology and Medicine
Weber, Gerhard Wilhelm; Ozogur-Akyuz, Sureyya; Kropat, Erik (2009-06-01)
An emerging research area in computational biology and biotechnology is devoted to mathematical modeling and prediction of gene-expression patterns; it nowadays requests mathematics to deeply understand its foundations. This article surveys data mining and machine learning methods for an analysis of complex systems in computational biology, It mathematically deepens recent advances in modeling and prediction by rigorously introducing the environment and aspects of errors and uncertainty into the genetic con...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Uğur, “Optimization and dynamics of gene-environment networks with intervals,”
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION
, pp. 357–379, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54890.