Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
On generalized semi-infinite optimization of genetic networks
Date
2007-07-01
Author
Weber, Gerhard Wilhelm
Tezel, Aysun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
203
views
0
downloads
Cite This
Since some years, the emerging area of computational biology is looking for its mathematical foundations. Based on modem contributions given to this area, our paper approaches modeling and prediction of gene-expression patterns by optimization theory, with a special emphasis on generalized semi-infinite optimization. Based on experimental data, nonlinear ordinary differential equations are obtained by the optimization of least-squares errors. The genetic process can be investigated by a time-discretization and a utilization of a combinatorial algorithm to detect the stability regions. We represent the dynamical systems by means of matrices which allow biological-medical interpretations, and by genetic or new gene-environment networks. For evaluating these networks we optimize them under constraints imposed. For controlling the connectedness structure of the network, we introduce GSIP into this modem application field which can lead to important services in medicine and biotechnology, including energy production and material science.
Subject Keywords
Computational biology
,
Stability
,
Environment
,
Gene-expression data
,
Dynamical systems
,
Mathematical modeling
,
Generalized semi-infinite programming
URI
https://hdl.handle.net/11511/56732
Journal
TOP
DOI
https://doi.org/10.1007/s11750-007-0003-6
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
On optimization, dynamics and uncertainty: A tutorial for gene-environment networks
WEBER, G. -W.; Uğur, Ömür; Taylan, P.; TEZEL, AYSUN (2009-05-28)
An emerging research area in computational biology and biotechnology is devoted to mathematical modeling and prediction of gene-expression patterns; to fully understand its foundations requires a mathematical study. This paper surveys and mathematically expands recent advances in modeling and prediction by rigorously introducing the environment and aspects of errors and uncertainty into the genetic context within the framework of matrix and interval arithmetic. Given the data from DNA microarray experiments...
An algorithmic approach to analyse genetic networks and biological energy production: an introduction and contribution where OR meets biology
Uğur, Ömür; WEBER, G. -W.; WUENSCHIERS, R. (2009-01-01)
An emerging research area in computational biology and biotechnology is devoted to modelling and prediction of gene-expression patterns. In this article, after a short review of recent achievements we deepen and extend them, especially, by emphasizing and analysing the elegant means of matrix algebra. Based on experimental data, ordinary differential equations with nonlinearities on the right-hand side and a generalized treatment of the absolute shift term, representing the environmental effects, are invest...
A Review on Data Mining and Continuous Optimization Applications in Computational Biology and Medicine
Weber, Gerhard Wilhelm; Ozogur-Akyuz, Sureyya; Kropat, Erik (2009-06-01)
An emerging research area in computational biology and biotechnology is devoted to mathematical modeling and prediction of gene-expression patterns; it nowadays requests mathematics to deeply understand its foundations. This article surveys data mining and machine learning methods for an analysis of complex systems in computational biology, It mathematically deepens recent advances in modeling and prediction by rigorously introducing the environment and aspects of errors and uncertainty into the genetic con...
Optimization and dynamics of gene-environment networks with intervals
Uğur, Ömür (2007-05-01)
There are a few areas of science and technology which are only as challenging, emerging and promising as computational biology. This area is looking for its mathematical foundations, for methods of prediction while guaranteeing robustness, and it is of a rigorous interdisciplinary nature. In this paper, we deepen and extend the approach of learning gene-expression patterns in the framework of gene-environment networks by optimization, especially, generalized semi-infinite optimization (GSIP). With respect t...
Mathematical contributions to dynamics and optimization of gene-environment networks
Weber, Gerhard Wilhelm; Tezel, Aysun; TAYLAN, PAKİZE; Soyler, Alper; Cetin, Mehmet (Informa UK Limited, 2008-01-01)
This article contributes to a further introduction of continuous optimization in the field of computational biology which is one of the most challenging and emerging areas of science, in addition to foundations presented and the state-of-the-art displayed in [C.A. Floudas and P.M. Pardalos, eds., Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches, Kluwer Academic Publishers, Boston, 2000]. Based on a summary of earlier works by the coauthors and their colleagues, it r...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. W. Weber and A. Tezel, “On generalized semi-infinite optimization of genetic networks,”
TOP
, pp. 65–77, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56732.