Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design and Performance Analysis of a Grid Connected PWM-VSI System
Date
2013-11-30
Author
Kantar, Emre
Usluer, S. Nadir
Hava, Ahmet Masum
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
311
views
0
downloads
Cite This
Pulse-width modulation (PWM) voltage source inverters (VSIs) are favorable interface devices to the power grid for renewable energy systems. This paper deals with the design of the LCL-filter and inverter for the grid-connected VSI. A complete design procedure for both reactive and passive components of LCL-filter is demonstrated with a new iterative approach in selection of the filter inductors. The design process for a two-level VSI is clearly illustrated through an example and the dynamic response is investigated under insufficient and sufficient damping cases. In this study, comprehensive analyses have been conducted to maximize the performance and efficiency. For this purpose, the line current total harmonic distortion (THD) and power factor performance of the designed system is assessed under various load conditions. Besides, the effects of the utilization of different PWM patterns on efficiency are compared and contrasted under different loads with altering switching frequencies. Simulation results validate theoretical findings throughout the design phase.
Subject Keywords
3-PHASE
URI
https://hdl.handle.net/11511/54927
Conference Name
8th International Conference on Electrical and Electronics Engineering (ELECO)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Microwave sintering and characterization of soft magnetic powder metallurgical Ni-Fe alloys
Erdem, Derya; Dericioğlu, Arcan Fehmi; Department of Metallurgical and Materials Engineering (2011)
In this study, prealloyed austenitic stainless steel and premixed soft magnetic Ni-Fe permalloy compacts were consolidated through microwave and conventional sintering routes at combinations of various sintering temperatures and compaction pressures. Sintered alloys were characterized in terms of their densification, microstructural evolution as well as mechanical and magnetic properties. The effect of sintering method in terms of the applied sintering parameters on the final properties of the compacts were...
A Detailed Power Loss Analysis of Modular Multilevel Converter
Erturk, Feyzullah; Hava, Ahmet Masum (2015-03-19)
This paper thoroughly examines the semiconductor power loss characteristics of modular multilevel converters (MMC). Power loss behavior is examined under different pulse width modulation (PWM) methods and operating conditions. The effects of stored energy level, circulating current control utilization, power factor and submodule voltage balancing method on power loss are studied. Furthermore, unbalanced power losses and specific semiconductor stresses within a submodule are visualized by investigating the l...
Evaluation of Photovoltaic Systems For Reactive Power Compensation In Low Voltage Power Systems
Uğur, Mesut; Duymaz, Erencan; Göl, Murat; Keysan, Ozan (2018-10-25)
The four-quadrant operation ability of photovoltaic (PV) inverters makes them promising candidates for reactive power compensation in low voltage systems. In this paper, utilization of PV inverters instead of conventional reactive power compensation units is evaluated. The use of PV inverters for reactive power compensation as well as active power supplying is investigated considering a real life system. The considered system suffers from low capacitive power factor due to the connected online UPS system. T...
Design, control and optimization of vehicle suspensions with inerters
Gerger, Ozan; Ciğeroğlu, Ender; Başlamışlı, Çağlar; Department of Mechanical Engineering (2013)
Inerter is proposed as a mechanical equivalent of the capacitors available in electric circuits. The main advantage of the inerter is to provide a wider design space for a vehicle suspension by adding another suspension element next to spring and damper. Therefore, fine tuning of a suspension performance can be made without subjected to heavy trade-offs. The effect of the addition of inerter to a vehicle suspension and performance of the selected suspension arrangements with passive and semi-active inerters...
Fully Integrated Autonomous Interface With Maximum Power Point Tracking for Energy Harvesting TEGs With High Power Capacity
Tabrizi, Hamed Osouli; Jayaweera, Herath M. P. C.; Muhtaroglu, Ali (Institute of Electrical and Electronics Engineers (IEEE), 2020-05-01)
In this article, a novel fully autonomous and integrated power management interface circuit is introduced for energy harvesting using thermoelectric generators (TEGs) to supply power to Internet of Thing nodes. The circuit consists of a self-starting dc & x2013;dc converter based on a dual-phase charge pump with LC-tank oscillator, a digital MPPT unit, and a 1-V LDO regulator. The novel maximum power point tracking (MPPT) algorithm avoids open-circuit state, and accommodates varying input power and ultra-lo...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Kantar, S. N. Usluer, and A. M. Hava, “Design and Performance Analysis of a Grid Connected PWM-VSI System,” presented at the 8th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54927.