Microwave sintering and characterization of soft magnetic powder metallurgical Ni-Fe alloys

Download
2011
Erdem, Derya
In this study, prealloyed austenitic stainless steel and premixed soft magnetic Ni-Fe permalloy compacts were consolidated through microwave and conventional sintering routes at combinations of various sintering temperatures and compaction pressures. Sintered alloys were characterized in terms of their densification, microstructural evolution as well as mechanical and magnetic properties. The effect of sintering method in terms of the applied sintering parameters on the final properties of the compacts were investigated in a comparative manner. It was determined that microwave sintered permalloys are superior compared to their conventionally sintered counterparts in densification response, microstructural characteristics such as pore shape and distribution as well as mechanical properties for both austenitic stainless steel and permalloy compacts. However, permeability of the microwave sintered permalloys was inferior to their conventionally sintered counterparts in some cases due to microstructural refinement associated with microwave sintering route.

Suggestions

Design and Performance Analysis of a Grid Connected PWM-VSI System
Kantar, Emre; Usluer, S. Nadir; Hava, Ahmet Masum (2013-11-30)
Pulse-width modulation (PWM) voltage source inverters (VSIs) are favorable interface devices to the power grid for renewable energy systems. This paper deals with the design of the LCL-filter and inverter for the grid-connected VSI. A complete design procedure for both reactive and passive components of LCL-filter is demonstrated with a new iterative approach in selection of the filter inductors. The design process for a two-level VSI is clearly illustrated through an example and the dynamic response is inv...
Electroluminescence from Er-doped Si-rich silicon nitride light emitting diodes
Yerci, Selçuk; DAL NEGRO, Luca (2010-08-23)
Electrical devices based on Erbium (Er) doping of silicon nitride have been fabricated by reactive cosputtering and intense, room temperature Er electroluminescence was observed in the visible (527, 550, and 660 nm) and near-infrared (980 and 1535 nm) spectral ranges at low injection voltages (< 5 V EL turn on). The electrical transport mechanism in these devices was investigated and the excitation cross section for the 1535 nm Er emission was measured under electrical pumping, resulting in a value (1.2x10(...
Fatigue Cracking of Hybrid Plasma Gas Metal Arc Welded 2205 Duplex Stainless Steel
Yurtışık, Koray; Tirkeş, Süha (2014-01-01)
Contrary to other keyhole welding applications on duplex stainless steels, a proper cooling time and a dilution were achieved during hybrid plasma gas metal arc welding that provided sufficient reconstructive transformation of austenite without sacrificing its high efficiency and productivity. Simultaneous utilization of keyhole and metal deposition in the hybrid welding procedure enabled us to get an as-welded 11 mm-thick standard duplex stainless steel plate in a single pass. Me examination on hybrid plas...
Energy transfer and 1.54 mu m emission in amorphous silicon nitride films
Yerci, Selçuk; Kucheyev, S. O.; VAN BUUREN, TONY; Basu, S. N.; Dal Negro, L. (2009-07-20)
Er-doped amorphous silicon nitride films with various Si concentrations (Er:SiNx) were fabricated by reactive magnetron cosputtering followed by thermal annealing. The effects of Si concentrations and annealing temperatures were investigated in relation to Er emission and excitation processes. Efficient excitation of Er ions was demonstrated within a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er:SiNx. A systematic optimization of the 1.54 mu m emission was pe...
Hydroxyapatite and zirconia composites: Effect of MgO and MgF2 on the stability of phases and sinterability
Evis, Zafer; KUTBAY, IŞIL (2008-07-15)
Composites of hydroxyapatite with cubic zirconia with MgO or MgF2 were pressureless sintered at temperatures from 1000 to 1300 degrees C. The reactions and transformations of phases were monitored with X-ray diffraction. For the hydroxyapatite and zirconia composites with MgO, calcium diffused from hydroxyapatite into the zirconia, and hydroxyapatite decomposed to tri-calcium phosphate at sintering temperatures higher than 1000 degrees C. Above about 1200 degrees C, CaZrO3 was formed. Composites containing ...
Citation Formats
D. Erdem, “Microwave sintering and characterization of soft magnetic powder metallurgical Ni-Fe alloys,” M.S. - Master of Science, Middle East Technical University, 2011.