Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Semiconductor-hydrogen technology
Date
1996-06-28
Author
Bayer, I
Eroğlu, İnci
Turker, L
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
201
views
0
downloads
Cite This
Photoelectrochemical (PEG) solar cells are devices that convert solar energy directly into electricity or chemicals. Semiconductor-hydrogen technology, therefore is quite important for stable conversion devices. For production of a chemical fuel semiconductor can serve as a catalyst (1). Electricity producing solar cells are regarded as one of the most important auxiliary equipment for hydrogen production. Moreover, they can be the source for hydrogen. Their design criteria involve investigation of a large number of parameters such as electrode material, electrolytic solution, light intensity and type of the PEC reactor itself.
Subject Keywords
Semiconductor
,
Electrochemical cell
,
Solar cell
,
Dye
URI
https://hdl.handle.net/11511/54961
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Analysis of boron doped hydrogenated amorphous silicon carbide thin film for silicon heterojunction solar cells
Salimi, Arghavan; Turan, Raşit; Department of Micro and Nanotechnology (2019)
Silicon based solar cells are the dominant type of solar cells in the photovoltaic industry. Recently, there have been increasing efforts to develop c-Si solar cells with higher efficiency and lower cost. Among them, silicon heterojunction solar cell (SHJ) is attracting much attention because of its superior performance values demonstrated at both R&D and industrial levels. One of the common limiting criteria is the recombination at the front side which can be solved by providing proper passivation at the f...
NOVEL HOLE TRANSPORT, LARGE AMMONIUM CATION and DOPANT MATERIALS FOR REALIZATION OF HIGH-PERFORMANCE PEROVSKITE SOLAR CELLS
Bağ Çelik, Esra; Günbaş, Emrullah Görkem; Yerci, Selçuk; Department of Polymer Science and Technology (2023-2-24)
Perovskite solar cells (PSCs) have been widely studied for their potential to revolutionize the solar energy industry. Unfortunately, the commercialization of PSCs remains challenging due to the limitation of high-performance, low-cost, and environmentally stable organic hole-transport materials (HTMs). For this reason, the development of a new generation HTMs is strongly anticipated. Hole transport material (HTM) is one of the critical components in perovskite solar cells, which is responsible for transpor...
Surface texturing study with aluminum induced texturing method on soda-lime glass substrates for thin film solar cells
Ünal, Mustafa; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2017)
It is essential to employ an effective light trapping scheme to decrease the cost of produced solar electricity further in thin film solar cell technologies. There are several methods that can be used for light trapping and aluminum induced texturing (AIT) is one of them. The aim of this thesis study is to obtain highly effective light trapping interface via texturing of glass surface by AIT process. The resultant texture is affected by several parameters such as Al thickness, annealing time and temperature...
CZTSSe thin film : growth, characterization and solar cell applications
Terlemezoğlu, Makbule; Parlak, Mehmet; Department of Physics (2019)
Cu2ZnSn(S,Se)4 (CZTSSe) compound is one of the most promising absorber materials for thin film solar cell technology due to the abundance and non-toxicity of its constituents. Besides, CZTSSe has an ideal direct band gap value in the range of 1-1.5 eV and high absorption coefficient (> 104 cm-1) in the visible region, which satisfies the conversion of the maximum amount of energy of the solar spectrum. For this, CZTSSe absorber layer with only a few microns of thickness is sufficient to absorb all the photo...
Benzodithiophene and selenophene bearing polymer for inverted organic solar cell applications
Toppare, Levent Kamil; Yaşa, Mustafa; Göker, Seza; Udum, Yasemin; Günbaş, Emrullah Görkem; Çırpan, Ali (null; 2018-07-06)
Inverted organic solar cells have advantages over conventional organic solar cells. Most important advantage is the improved stability of inverted solar cells. In this study, benzodithiophene, quinoxaline and selenophene bearing conjugated polymer was used as donor material in inverted solar cell applications. Device performances were investigated with the device configuration of ITO/ ZnO/ polymer:PC71BM/ MoO3/ Ag. In order to improve device performance, polymer PCBM ratio, active layer thickness, annealing...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
I. Bayer, İ. Eroğlu, and L. Turker, “Semiconductor-hydrogen technology,” 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54961.