Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Attitude Control of Satellites with De-Orbiting Solar Sails
Date
2013-06-14
Author
Tekinalp, Ozan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
198
views
0
downloads
Cite This
Utilization of solar sails for the de-orbiting of satellites is investigated. The satellite orbit is assumed to be equatorial. Proper attitude maneuver is prescribed to utilize highest solar drag from the sun. The maneuver is realized using a quaternion feedback algorithm. The success of the attitude control during the continuous and abrupt maneuvers is shown through simulations. The reduction in semi major axis due to solar drag is also demonstrated.
Subject Keywords
Solar sail
,
Orbit decay
,
Locally optimal steering law
URI
https://hdl.handle.net/11511/54985
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Orbit Control of an Earth Orbiting Solar Sail Satellite
Polat, Halis Can; Tekinalp, Ozan (2022-09-01)
A concept for the utilization of solar sail satellite's propellant-free thrust capability at Low earth orbit (LEO) is proposed and its orbit control strategy is analyzed. Thrust vector control of the sail's normal direction is used to harvest the solar radiation pressure for generating the necessary acceleration to change the orbital elements. The required control vector direction is determined with two approaches. The first approach is realized by approximating the Gaussian Variational Equations at the emp...
Attitude and Orbit Control of a Solar Sail Spacecraft for Responsive Operational Concept
Polat, Halis Can; Tekinalp, Ozan; Department of Aerospace Engineering (2021-6-15)
Utilization of the propellant-free thrust capability of Solar Sail Spacecraft (SSS) is addressed. For this purpose, an elliptical orbit with a very low perigee altitude and an apogee altitude high enough to have solar sail acceleration is proposed for Earth observation mission. In the mission part, regional observation tasks are carried out that take place in very Low Earth Orbit region. The orbit maintenance and control are handled in the high altitude regions. The baseline SSS design is accomplished and p...
Attitude control of an earth orbiting solar sail satellite to progressively change the selected orbital element
Ataş, Ömer; Tekinalp, Ozan; Department of Aerospace Engineering (2014)
Solar sailing is currently under investigation for space propulsion. Radiation pressure from the Sun is utilized to propel the spacecraft. This thesis examines locally optimal steering law to progressively change the selected orbital elements, without considering others, of an Earth centered Keplerian orbit of a cube satellite with solar sail. The proper attitude maneuver mechanization is proposed to harvest highest solar radiation force in the desired direction for such Earth orbiting satellites. The satel...
Solar Sail Application with a Proposed Low Earth Orbit Mission Concept
Polat, Halis Can; Tekinalp, Ozan (2019-01-01)
Solar Sail applications utilizing the advantages of propellant-free and theoretically infinite specific impulse are widely investigated, especially for interplanetary/interstellar and near-Earth asteroid missions and non-Keplerian orbit designs. However, applications regarding to the Low Earth Orbit (LEO), specifically below 700 km, are rarely studied as aerodynamic drag is dominant. This study is aimed to harvest the LEO mission advantages by proposing an elliptical orbit design and control via continuous ...
SOLAR IRRADIATION ESTIMATION ON A SOLAR POWERED UAV OVER A MISSION COURSE
Ozcan, Guclu; Alemdaroglu, Nafiz (2015-06-12)
This paper is about solar irradiation estimation on a solar powered UAV over its mission course [1]. Solar irradiation estimation and maximizing the solar energy collection are critical for solar powered UAVs and their performance. In this paper main focus is on solar irradiation calculations and comparison of two possible flight paths for solar energy collection during a transport or inspection mission.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Tekinalp, “Attitude Control of Satellites with De-Orbiting Solar Sails,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54985.