Attitude and Orbit Control of a Solar Sail Spacecraft for Responsive Operational Concept

2021-6-15
Polat, Halis Can
Utilization of the propellant-free thrust capability of Solar Sail Spacecraft (SSS) is addressed. For this purpose, an elliptical orbit with a very low perigee altitude and an apogee altitude high enough to have solar sail acceleration is proposed for Earth observation mission. In the mission part, regional observation tasks are carried out that take place in very Low Earth Orbit region. The orbit maintenance and control are handled in the high altitude regions. The baseline SSS design is accomplished and presented. Orbital maintenance for station keeping and orbital maneuvers for carrying out specific missions are analyzed, and capabilities of SSS for changing orbital parameters are investigated. A constellation of observation satellites is also proposed addressing the weaknesses in rapid response of SSS to mission needs. Attitude control for smooth attitude maneuvers is also addressed. It is found that the novel quaternion-based attitude tracking control approach with time dependent attitude trajectory offers smooth, jerk-free and accurate attitude tracking.

Suggestions

Orbit Control of an Earth Orbiting Solar Sail Satellite
Polat, Halis Can; Tekinalp, Ozan (2022-09-01)
A concept for the utilization of solar sail satellite's propellant-free thrust capability at Low earth orbit (LEO) is proposed and its orbit control strategy is analyzed. Thrust vector control of the sail's normal direction is used to harvest the solar radiation pressure for generating the necessary acceleration to change the orbital elements. The required control vector direction is determined with two approaches. The first approach is realized by approximating the Gaussian Variational Equations at the emp...
Solar Sail Application with a Proposed Low Earth Orbit Mission Concept
Polat, Halis Can; Tekinalp, Ozan (2019-01-01)
Solar Sail applications utilizing the advantages of propellant-free and theoretically infinite specific impulse are widely investigated, especially for interplanetary/interstellar and near-Earth asteroid missions and non-Keplerian orbit designs. However, applications regarding to the Low Earth Orbit (LEO), specifically below 700 km, are rarely studied as aerodynamic drag is dominant. This study is aimed to harvest the LEO mission advantages by proposing an elliptical orbit design and control via continuous ...
Attitude Control of Satellites with De-Orbiting Solar Sails
Tekinalp, Ozan (2013-06-14)
Utilization of solar sails for the de-orbiting of satellites is investigated. The satellite orbit is assumed to be equatorial. Proper attitude maneuver is prescribed to utilize highest solar drag from the sun. The maneuver is realized using a quaternion feedback algorithm. The success of the attitude control during the continuous and abrupt maneuvers is shown through simulations. The reduction in semi major axis due to solar drag is also demonstrated.
ATTITUDE CONTROL OF AN EARTH ORBITING SOLAR SAIL SATELLITE TO PROGRESSIVELY CHANGE THE SELECTED ORBITAL ELEMENT
Atas, Omer; Tekinalp, Ozan (2015-01-15)
Solar sailing where the radiation pressure from Sun is utilized to propel the spacecraft is examined in the context of orbital maneuvers. In this vein a locally optimal steering law to progressively change the selected orbital elements, without considering others, of an Earth centered Keplerian orbit of a cubesat satellite with solar sail is addressed. The proper attitude maneuver mechanization is proposed to harvest highest solar radiation force in the desired direction for such Earth orbiting satellites. ...
ORBIT TRANSFER OF AN EARTH ORBITING SOLAR SAIL CUBESAT
Atas, Omer; Tekinalp, Ozan (2017-02-09)
Propelling a spacecraft by using solar radiation pressure is examined in the context of orbital maneuvers. A locally optimal steering law to progressively change number of selected orbital elements together is addressed. An Earth centered cubesat satellite with solar sail is used as an example. The proper attitude maneuver mechanization is proposed to harvest highest solar radiation force in the desired direction for Earth orbiting satellites. The satellite attitude control is realized using to-go quaternio...
Citation Formats
H. C. Polat, “Attitude and Orbit Control of a Solar Sail Spacecraft for Responsive Operational Concept,” Ph.D. - Doctoral Program, Middle East Technical University, 2021.