Elastic-plastic large strain large displacement analysis of sheet metal forming processes

An elastic-plastic finite element formulation is presented for three dimensional deformation analysis of sheet metal forming operations. The updated Lagrangian type formulation is based on membrane theory to analyze the large strain-large displacements. The sheet is considered isotropic that obeys Mises flow theory. The deformation is rate-insensitive and work-hardening property of the material is incorporated. Coulomb friction is applied between the sheet and punch and sheet and die interfaces. Triangular flat elements are employed in the finite element discreatization. Comparison of the finite element results with the experimental data is also given.


Elastic analysis of orthotropic cylinders under different boundary conditions
Farukoğlu, Ömer Can; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2016)
Analytical solutions are derived to examine the elastic responses of fixed end cylinders made of orthotropic materials. Cylinders are investigated under different boundary conditions which are internal pressure, external pressure, combined pressure and annular rotation respectively. Making use of Maxwell relations, orthotropic cylinders are transformed to isotropic ones. In order to exhibit numerical examples different orthotropic materials are used and compared. It is observed that orthotrophy slightly inf...
Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets
Kökten, Hatice (Elsevier BV, 2011-10-01)
Energetics and structural properties of carbon and oxygen doped hexagonal boron nitride sheets have been investigated by performing density functional theory calculations. Substitutional doping model has been considered in the neutral charge state. C and O atoms replaced either B or N site in the system as impurities. A systematic study has been performed to see the effect of cell size on the calculated quantities, such as formation energy, relaxation energy, charge and bond length. It has been found that s...
Forced vibrations of functionally graded annular and circular plates by domain-boundary element method
Eshraghi, Iman; Dağ, Serkan (Wiley, 2020-08-01)
Axi-symmetric dynamic response of functionally graded circular and annular Mindlin plates with through-the-thickness variations of physical properties is investigated by a new domain-boundary element formulation. Three governing partial differential equations of motion of the inhomogeneous plate are converted to integral equations by utilizing the static fundamental solutions of the displacement components. These integral equations are then spatially discretized by dividing the entire domain into a number o...
Mechanical properties of CdZnTe nanowires under uniaxial stretching and compression: A molecular dynamics simulation study
Kurban, Mustafa; Erkoç, Şakir (2016-09-01)
Structural and mechanical properties of ternary CdZnTe nanowires have been investigated by performing molecular dynamics simulations using an atomistic potential. The simulation procedures are carried out as uniaxial stretching and compression at 1 K and 300 K. The results demonstrate that the mechanical properties of CdZnTe ternary nanowires show significantly a dependence on size and temperature under uniaxial stretching and compression.
Simulation of crystallization and glass formation processes for binary Pd-Ag metal alloys
Kart, HH; Uludogan, M; Cagin, T; Tomak, Mehmet (2003-09-12)
Glass formation and crystallization process of Pd-Ag metallic alloys are investigated by means of molecular dynamics simulation. This simulation uses the quantum Sutton-Chen (Q-SC) potential to study structural and transport properties of Pd-Ag alloys. Cooling rates and concentration effects on the glass formation and crystallization of binary alloys considered in this work are investigated. Pd-Ag alloys show the glass structure at fast cooling rates while it crystallizes at slow cooling rates. Increment of...
Citation Formats
H. Darendeliler, “Elastic-plastic large strain large displacement analysis of sheet metal forming processes,” 1998, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55000.