Mobile robot navigation: Implementing the GVG in the presence of sharp corners

1996-01-01
A robot can explore an unknown environment by incrementally constructing a roadmap of that environment using line of sight sensor information. Recall that a roadmap is a one-dimensional representation of a robot's environment. This paper addresses one problem that occurs while generating a roadmap: what happens when sonar sensors cannot detect sharp objects because of the specularities? To do this, a new sensor model is combined with an already existing incremental construction procedure for a roadmap. Experiments on a mobile robot validate the results of this paper.
1997 IEEE/RSJ International Conference on Intelligent Robot and Systems - Innovative Robotics for Real-World Applications (IROS 97)

Suggestions

Modelling, simulation and testing of artificial neural network augmented kalman filter for INS/GPS and magnetometer integration
Yıldız, Doğan; Konukseven, Erhan İlhan; Nalbantoğlu, Volkan; Department of Mechanical Engineering (2016)
The objective of this thesis is to investigate a hybrid Artificial Intelligence/ Kalman Filter (AI/KF) system to determine 3D attitude, velocity and position of a vehicle in challenging GPS environment. In navigation problem, the aim is to determine the position and velocity of the host vehicle from initial conditions. By using Inertial Measurement Unit (IMU), it is possible to calculate position and velocity with an error. In other words, during the integration stage of the IMU measurement, errors will be ...
Face detection in active robot vision
Önder, Murat; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2004)
The main task in this thesis is to design a robot vision system with face detection and tracking capability. Hence there are two main works in the thesis: Firstly, the detection of the face on an image that is taken from the camera on the robot must be achieved. Hence this is a serious real time image processing task and time constraints are very important because of this reason. A processing rate of 1 frame/second is tried to be achieved and hence a fast face detection algorithm had to be used. The Eigenfa...
Mobile robot navigation: Issues in implementating the generalized Voronoi graph in the plane
Choset, H; Konukseven, Erhan İlhan; Burdick, J (1996-01-01)
This paper describes the procedures that are required to implement, on a conventional mobile robot, a sensor based motion planning algorithm based on the generalized Voronoi graph (GVG). The GVG is a roadmap of a static environment, and we describe how to incrementally construct this roadmap using only range information in an unknown environment. The GVG may then be used to guide future excursions into the explored environment. Experimental results validate the utility of this work.
Automated classification of remote sensing images using multileveled MobileNetV2 and DWT techniques
Karadal, Can Haktan; Kaya, Muhammed Çağrı; Tuncer, Turker; Dogan, Sengul; Acharya, U. Rajendra (2021-12-15)
Automated classification of remote sensing images is one of the complex issues in robotics and machine learning fields. Many models have been proposed for remote sensing image classification (RSIC) to obtain high classification performance. The objective of this study are twofold. First, to create a new space object image collection as such a dataset is not currently available. Second, propose a novel RSIC model to yield highest classification performance using our newly created dataset. Our presented autom...
Feedback motion planning of a novel fully actuated unmanned surface vehicle via sequential composition of random elliptical funnels
Özdemir, Oğuz; Ankaralı, Mustafa Mert; Department of Electrical and Electronics Engineering (2022-12-27)
This thesis proposes and analyzes a motion planning and control schema for unmanned surface vehicles that fuses sampling-based approaches’ probabilistic completeness with closed-loop approaches’ robustness. The Proposed schema is based on the sequential composition of elliptical funnels, and it consists of two stages: tree generation and motion control. For validation of the approach, we carried out experiments using both simulation and physical setup besides the mathematical analysis. In order to have a co...
Citation Formats
E. İ. Konukseven, “Mobile robot navigation: Implementing the GVG in the presence of sharp corners,” presented at the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems - Innovative Robotics for Real-World Applications (IROS 97), Grenoble, FRANCE, 1996, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55104.