Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Approximate Chernoff Fusion of Gaussian Mixtures Using Sigma-Points
Date
2014-07-10
Author
Gunay, Melih
Orguner, Umut
Demirekler, Mübeccel
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
158
views
0
downloads
Cite This
Covariance intersection (CI) is a method used for consistent track fusion with unknown correlations. The well-known generalization of CI to probability density functions is known as Chernoff fusion. In this paper, we propose an approximate approach for the Chernoff fusion of Gaussian mixtures based on a sigma-point approximation of the underlying densities. The resulting general density fusion rule yields a closed form cost function and an analytical fused density for Gaussian mixtures. The proposed method is applied to a simple but illustrative density fusion problem and compared to exact numerical Chernoff fusion.
Subject Keywords
Architectures
,
Algorithms
URI
https://hdl.handle.net/11511/55154
Conference Name
17th International Conference on Information Fusion (FUSION)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Efficient Surface Integral Equation Methods for the Analysis of Complex Metamaterial Structures
Yla-Oijala, Pasi; Ergül, Özgür Salih; Gurel, Levent; Taskinen, Matti (2009-03-27)
Two approaches, the multilevel fast multipole algorithm with sparse approximate inverse preconditioner and the surface equivalence principle algorithm, are applied to analyze complex three-dimensional metamaterial structures. The efficiency and performance of these methods are studied and discussed.
A Multithreaded Recursive and Nonrecursive Parallel Sparse Direct Solver
Bölükbaşı, Ercan Selçuk (2016-01-01)
Sparse linear system of equations often arises after discretization of the partial differential equations (PDEs) such as computational fluid dynamics, material science, and structural engineering. There are, however, sparse linear systems that are not governed by PDEs, some examples of such applications are circuit simulations, power network analysis, and social network analysis. For solution of sparse linear systems one can choose using either a direct or an iterative method. Direct solvers are based on so...
Optimization of the array geometry for direction finding
Özaydın, Seval; Koç, Seyit Sencer; Tanık, Yalçın; Department of Electrical and Electronics Engineering (2003)
In this thesis, optimization of the geometry of non-uniform arrays for direction finding yielding unambiguous results is studied. A measure of similarity between the array response vectors is defined. In this measure, the effects of antenna array geometry, source placements and antenna gains are included as variable parameters. Then, assuming that the antenna gains are known and constant, constraints on the similarity function are developed and described to result in unambiguous configurations and maximum r...
Error Control of MLFMA within a Multiple-Precision Arithmetic Framework
Kalfa, Mert; ERTÜRK, VAKUR BEHÇET; Ergül, Özgür Salih (2018-07-13)
We present a new error control scheme that provides the truncation numbers as well as the required digits of machine precision for the multilevel fast multipole algorithm (MLFMA). The proposed method is valid for all frequencies, whereas the previous studies on error control are valid only for high-frequency problems. When combined with a multiple-precision arithmetic framework, the proposed method can be used to solve low-frequency problems that would otherwise experience overflow issues. Numerical results...
Stabilization of the Fast Multipole Method for Low Frequencies Using Multiple-Precision Arithmetic
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2014-08-23)
We stabilize a conventional implementation of the fast multipole method (FMM) for low frequencies using multiple-precision arithmetic (MPA). We show that using MPA is a direct remedy for low-frequency breakdowns of the standard diagonalization, which is prone to numerical errors at short distances with respect to wavelength. By increasing the precision, rounding errors are suppressed until a desired level of accuracy is obtained with plane-wave expansions. As opposed to other approaches in the literature, u...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Gunay, U. Orguner, and M. Demirekler, “Approximate Chernoff Fusion of Gaussian Mixtures Using Sigma-Points,” presented at the 17th International Conference on Information Fusion (FUSION), Salamanca, SPAIN, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55154.