Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Archimedean Cones in Vector Spaces
Date
2017-01-01
Author
Emelyanov, Eduard
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
277
views
0
downloads
Cite This
In the case of an ordered vector space (briefly, OVS) with an order unit, the Archimedeanization method was recently developed by Paulsen and Tomforde [4]. We present a general version of the Archimedeanization which covers arbitrary OVS. Also we show that an OVS (V, V+) is Archimedean if and only if inf(tau is an element of{tau}), y is an element of L(x(tau) - y) = 0 for any bounded below decreasing net {x(tau)}(tau) in V, where L is the collection of all lower bounds of {x(tau)}(tau), and give characterization of the almost Archimedean property of V+ in terms of existence of a linear extension of an additive mapping T : U+ -> V+.
Subject Keywords
Ordered vector space
,
Pre-ordered vector space
,
Archimedean
,
Archimedean element
,
Almost Archimedean
,
Archimedeanization
,
Linear extension
URI
https://hdl.handle.net/11511/55220
Journal
JOURNAL OF CONVEX ANALYSIS
Collections
Department of Mathematics, Article
Suggestions
OpenMETU
Core
Series solution of the wave equation in optic fiber
Çıldır, Sema; Çakır, Serhat; Department of Physics (2007)
In this study, the mapped Galerkin method was applied to solve the vector wave equation based on H field and to obtain the propagation constant in x y space. The vector wave equation was solved by the transformation of the infinite x y plane onto a unit square. Two-dimensional Fourier series expansions were used in the solutions. Modal fields and propagation constants of dielectric waveguides were calculated. In the first part of the study, all of the calculations were made in step index fibers. Transvers...
Exact solutions of the radial Schrodinger equation for some physical potentials
IKHDAİR, SAMEER; Sever, Ramazan (2007-12-01)
By using an ansatz for the eigenfunction, we have obtained the exact analytical solutions of the radial Schrodinger equation for the pseudoharmonic and the Kratzer potentials in two dimensions. The bound-state solutions are easily calculated from this eigenfunction ansatz. The corresponding normalized wavefunctions are also obtained. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Nonstandard hulls of lattice-normed ordered vector spaces
Aydin, Abdullah; Gorokhova, Svetlana; Gul, Hasan (2018-01-01)
Nonstandard hulls of a vector lattice were introduced and studied in many papers. Recently, these notions were extended to ordered vector spaces. In the present paper, following the construction of associated Banach-Kantorovich space due to Emelyanov, we describe and investigate the nonstandard hull of a lattice-normed space, which is the foregoing generalization of Luxemburg's nonstandard hull of a normed space.
Annulus criteria for mixed nonlinear elliptic differential equations
ŞAHİNER, YETER; Zafer, Ağacık (Elsevier BV, 2011-05-01)
New oscillation criteria are obtained for forced second order elliptic partial differential equations with damping and mixed nonlinearities of the form
uτ-Convergence in locally solid vector lattices
Dabboorasad, Yousef A M; Emel’yanov, Eduard; Department of Mathematics (2018)
We say that a net (xα) in a locally solid vector lattice (X,τ) is uτ-convergent to a vector x ∈ X if
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Emelyanov, “Archimedean Cones in Vector Spaces,”
JOURNAL OF CONVEX ANALYSIS
, pp. 169–183, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55220.