Interactions between backlash and bearing clearance nonlinearity in geared flexible rotors

2007-09-07
In this study, the interactions between backlash, bearing clearance and bearing flexibility are studied in geared flexible rotors. For this purpose, the non-linear mathematical model developed in a recent previous study for geared rotors on flexible bearings is extended further to handle clearance nonlinearity in bearings. The model consists of elastic shafts on elastic bearings with clearance, and coupled by a non-linear gear mesh interface. Shafts are modeled by using finite elements. The mathematical model includes the axial loading on shafts, rotary inertia, material damping of shafts, backlash nonlinearity of gear mesh and flexible bearings with clearances nonlinearity. The model considers also the effects of gear errors and profile modifications. The excitation effect of time varying mesh stiffness is indirectly included into the analysis through a periodic displacement representing loaded static transmission error (STE). STE input is modeled by the highest n harmonic terms of the Fourier series representation of the measured or calculated data. The model developed is believed to be one of the most advanced ones: It includes several linear and non-linear effects and capable of handling various different gear-rotor-bearing configurations. Through several case studies, the combined effects of backlash, bearing clearance, and bearing flexibility on dynamic mesh force and bearing loads are studied.

Suggestions

Experimental Investigation of New Indices of Broken Rotor Bar in Induction Motor
Oumaamar, M. E. K.; Razik, H.; Rezzoug, A.; Chemali, H.; Khezzar, A. (2011-09-10)
Most of rotor related faults in three-phase induction motors are due to broken rotor bars and end-ring defects. Nowadays Inductions motors are more frequently used with inverters which make the diagnosis process more complicated. Furthermore, some manufacturers of induction machines mount converters (i.e. rectifier and inverter) directly onto the machine, which makes the stator current unattainable for diagnosis. In order to overcome these drawbacks, the authors propose to analyze new motor fault signatures...
Nonlinear Time-Varying Dynamic Analysis of a Multi-Mesh Spur Gear Train
Yavuz, Siar Deniz; Saribay, Zihni Burcay; Ciğeroğlu, Ender (2016-01-28)
The nonlinear dynamics of a multi-mesh spur gear train is considered in this study. The gear train consists of three spur gears, with one of the gears in mesh with the other two. Dynamic model includes gear backlash in the form of clearance-type displacement functions and time variation of gear mesh stiffness. The system is reduced to a two-degree-of-freedom definite model by using the relative gear mesh displacements as the coordinates. The equations of motion are solved for periodic steady-state response ...
Design, Development and Implementation of Sensorless Digital Control of an Electric Motorization
Dida, Abdelkader Hadj; Bourahla, M.; Ertan, Hulusi Bülent; Benghanem, M. (2014-09-24)
The most industrial applications use the variation of the torque, speed and/or position in process, for which extremely severe specifications are needed. In the field of the drive of the electric machines, the elimination of the mechanical speed sensor can present an economic interest and improve safety of operation. One thus tries to make fulfill the speed measurement by implementing in a Digital signal processor (DSP) an algorithm of speed estimation using the current and voltage acquisition. Those method...
Nonlinear Dynamic Analysis of a Spiral Bevel Geared System
Yavuz, Siar Deniz; Saribay, Zihni Burcay; Ciğeroğlu, Ender (2017-02-02)
A nonlinear dynamic model of a spiral bevel gear train mounted on flexible shafts and bearings is proposed in this study. The finite element model of shafts is combined with a three-dimensional discrete mesh model of a spiral bevel gear pair. Bearing flexibilities are as well included in the model. Gear backlash is incorporated into the model in the form of clearance-type displacement functions and clearance nonlinearity and stiffness fluctuations of the bearings are neglected. A time-invariant mesh stiffne...
Prediction of workpiece dynamics and its effects on chatter stability in milling
Budak, Erhan; Alan, Salih; Özgüven, Hasan Nevzat (2012-01-01)
The workpiece dynamics affect stability in machining of flexible parts. However, it is not a straightforward task to include it in the analysis since the workpiece dynamics continuously change due to mass removal and variation of the cutter contact. In this paper, a methodology for prediction of inprocess workpiece dynamics is presented, which is based on a structural dynamic modification using the FE model of the workpiece. The cutter location (CL) file is used to determine the removed elements at each too...
Citation Formats
N. E. Gürkan, “Interactions between backlash and bearing clearance nonlinearity in geared flexible rotors,” 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55246.