Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A Novel Interactive Fuzzy Programming Approach for Optimization of Allied Closed-Loop Supply Chains
Date
2018-01-01
Author
Calik, Ahmet
YAPICI PEHLİVAN, NİMET
PAKSOY, TURAN
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
194
views
0
downloads
Cite This
In recent years, the relationship between companies and suppliers has changed with the continuous rise in environmental awareness and customer expectations. In order to fulfill customers' needs, the actors in a Supply Chain (SC) network sometimes compete and sometimes cooperate with each other. In SC management, both competitive and collaborative strategies have become important and have required different points of view. In a collaborative environment, companies should strive for common targets with mutual relationship. After managers decided to share their resources, some positive effects have appeared on the companies and suppliers' performance such as profitability, flexibility and efficiency. Consequently, many companies are willing to cooperate with each other in a SC network because of these reasons. On the other hand, Closed-Loop Supply Chain (CLSC) management has been attracting a growing interest because of increased environmental issues, government regulations and customer pressures. Based on this initiative, our paper presents a novel allied CLSC network design model with two different SCs including common suppliers and common collection centers. First, a decentralized multi-level Mixed-Integer Linear Programming (MILP) model that consists of two different levels of Decision Makers (DMs) is developed. The plants of common SCs comprise the upper-level DMs, common suppliers, common collection centers, and the logistics firm comprises the lower-level DMs. A novel Interactive Fuzzy Programming (IFP) approach using Fuzzy Analytic Hierarchy Process (AHP) is proposed to obtain a preferred compromise solution for the developed model. Through use of Fuzzy AHP in the proposed IFP approach, the DMs can identify the importance of the lower-level DMs. In order to validate the developed model and the proposed IFP approach, a numerical example is implemented. According to the obtained results, our proposed IFP method outperforms Sakawa and Nishizaki's(1) and Calik et al.' s(2) approach with respect to the satisfaction degrees of upper-level DMs for the developed CLSC model.
Subject Keywords
Closed-Loop Supply Chain Optimization
,
Interactive Fuzzy Programming;
,
Common Sources
,
Multi-Level Programming
,
Preferred Compromise Solution
URI
https://hdl.handle.net/11511/55316
Journal
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
A new fuzzy multi-criteria framework for measuring sustainability performance of a supply chain
Erol, Ismail; Sencer, Safiye; Sarı, Ramazan (2011-04-15)
Sustainable supply chain performance measurement is aimed at addressing environmental, social and economic aspects of sustainable supply chain management. It can be argued that it is not easy to reduce all dimensions of sustainable supply chain to a single unit. Then, the issue is that all valuations should somehow be reducible to a single one-dimensional standard. Multi-criteria evaluation introduces a framework to remedy this issue. As a consequence, multi-criteria evaluation seems to supply a proper and ...
A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design
Tirkolaee, Erfan Babaee; Mardani, Abbas; Dashtian, Zahra; Soltani, Mehdi; Weber, Gerhard Wilhelm (Elsevier BV, 2020-03-20)
Recently, large companies have shown a growing tendency to enhance the reliability and sustainability of their supply chains to increase customers' satisfaction in terms of on-time fulfillment of demands and to be compatible with environmental regulations. Therefore, finding the best approaches to achieve companies' goals is a crucial concern in supply chain management, and the majority of organizations prefer to cooperate with reliable and sustainable companies. In designing a supply chain, the supplier se...
A MULTI OBJECTIVE MODEL FOR OPTIMIZATION OF A GREEN SUPPLY CHAIN NETWORK
PAKSOY, TURAN; Ozceylan, Eren; Weber, Gerhard Wilhelm (2010-02-04)
This study develops a model of a closed-loop supply chain (CLSC) network which starts with the suppliers and recycles with the decomposition centers. As a traditional network design, we consider minimizing the all transportation costs and the raw material purchasing costs. To pay attention for the green impacts, different transportation choices are presented between echelons according to their CO2 emissions. The plants can purchase different raw materials in respect of their recyclable ratios. The focuses o...
A multi-phase heuristic for the production routing problem
Solyali, Oguz; Süral, Haldun (2017-11-01)
This study considers the production routing problem where a plant produces and distributes a single item to multiple retailers over a multi-period time horizon. The problem is to decide on when and how much to produce and stock at the plant, when and how much to serve and stock at each retailer, and vehicle routes for shipments such that the sum of fixed production setup cost, variable production cost, distribution cost, and inventory carrying cost at the plant and retailers is minimized. A multi-phase heur...
A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk
Lotfi, Reza; Mehrjerdi, Yahia Zare; Pishvaee, Mir Saman; Sadeghieh, Ahmad; Weber, Gerhard Wilhelm (2021-06-01)
One of the challenges facing supply chain designers is designing a sustainable and resilient supply chain network. The present study considers a closed-loop supply chain by taking into account sustainability, resilience, robustness, and risk aversion for the first time. The study suggests a two-stage mixed-integer linear programming model for the problem. Further, the robust counterpart model is used to handle uncertainties. Furthermore, conditional value at risk criterion in the model is considered in orde...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Calik, N. YAPICI PEHLİVAN, T. PAKSOY, and G. W. Weber, “A Novel Interactive Fuzzy Programming Approach for Optimization of Allied Closed-Loop Supply Chains,”
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS
, pp. 672–691, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55316.