Mitigating the Multipath Effects of Low Angle Monopulse Tracking by Even Difference Pattern

2012-11-02
Hizal, Altunkan
Koç, Seyit Sencer
In this study, low angle monopulse DF error due to multipath is dealt with using even difference pattern in a monopulse system. It is shown that the complex angle processing based on this approach has a potential to solve the problem. The multipath problem is modelled using both the specular and the diffuse scattering, while the random nature of the latter is also taken into account.

Suggestions

An Optimal Radar Detector Threshold Adaptation for Maneuvering Targets in Clutter
Aslan, Murat Samil; Saranlı, Afşar (2009-04-11)
In this paper, we consider the problem of radar detector threshold optimization for maneuvering targets in clutter In the earlier works, the problem was studied in the context of the probabilistic data association filter (PDAF) for non-maneuvering targets. In this study, we have extended the ideas, which were applied to the PDAF to the interacting multiple model PDAF (IMM-PDAF) for maneuvering targets. The proposed optimization problem and its solution show better results over the traditional approaches in ...
Target glint phenomenon analysis and evaluation of glint reduction techniques
Bahtiyar, Selçuk; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2012)
In this thesis, target induced glint error phenomenon is analyzed and the glint reduction techniques are evaluated. Glint error reduction performance of the methods is given in a comparative manner. First, target glint is illustrated with the dumbbell model which has two point scatterers. This illustration of the glint error builds the basic notion of target scattering centers and effect of scattering characteristics on glint error. This simplest approach is also used to understand the glint reduction metho...
Analysis and design of conformal frequency selective surfaces /
Dalkılıç, Akın; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
An efficient analysis and design approach for conformal frequency selective surface (FSS) structures is developed. The design methodology involves the analysis of both the planar and curved FSS structures. First, planar unit cell analysis of conformal FSS models are accomplished for normal and oblique incidence cases. To prove conformal applicability of planar designs, a semi-finite analysis method is utilized. This method is based on solution of a singly periodic curved FSS structure of semi-cylinder shape...
Radar propagation modelling using the split step parabolic equation method
Türkboyları, Alpaslan; Koç, Seyit Sencer; Department of Electrical and Electronics Engineering (2004)
This document describes radar propagation modelling using split step parabolic wave equation (PWE) method. A computer program using Fourier split-step (FSS) marching technique is developed for predicting the electromagnetic wave propagation in troposphere. The program allows specification of frequency, polarization, antenna radiation pattern, antenna altitude, elevation angle and terrain profile. Both staircase terrain modelling and conformal mapping are used to model the irregular terrain. Mixed Fourier tr...
Compressive sensing for radar target detection
Çağlıyan, Firuze; Yılmaz, Ali Özgür; Department of Electrical and Electronics Engineering (2014)
Compressive sampling, also known as compressive sensing and sparse recovery, is a new type of sampling theory, which predicts that sparse signals and images can be reconstructed from far less amount of data than what was traditionally considered necessary (i.e. Nyquist/Shannon sampling theory). The theory has many applications such as design of new imaging systems, cameras, sensor networks and analog to digital converters. Several algorithms have been proposed for the measurement and recovery process of the...
Citation Formats
A. Hizal and S. S. Koç, “Mitigating the Multipath Effects of Low Angle Monopulse Tracking by Even Difference Pattern,” 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55341.