Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations

Download
2010-01-20
Aydın Bayram, Selma
Nesliturk, A. I.
Tezer, Münevver
We consider the Galerkin finite element method (FEM) for the incompressible magnetohydrodynamic (MHD) equations in two dimension. The domain is discretized into a set of regular triangular elements and the finite-dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual-free bubble functions. To find the bubble part of the solution, a two-level FEM with a stabilizing subgrid of a single node is described and its application to the MHD equations is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems including the MHD cavity flow and the MHD flow over a step. The results show that the proper choice of the subgrid node is crucial to get stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Furthermore, the approximate Solutions obtained show the well-known characteristics of the MHD flow. Copyright (C) 2009 John Wiley & Sons, Ltd.
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Suggestions

Two-level finite element method with a stabilizing subgrid for the incompressible Navier-Stokes equations
NESLİTÜRK, ALİ İHSAN; Aydın Bayram, Selma; Tezer, Münevver (Wiley, 2008-10-20)
We consider the Galerkin finite element method for the incompressible Navier-Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite-dimensional spaces emploved consist of piecewise continuous linear interpolants enriched with the residual-free bubble functions. To find the bubble part of the Solution, a two-level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier-Stokes equation is ...
The finite element method over a simple stabilizing grid applied to fluid flow problems
Aydın, Selçuk Han; Tezer-Sezgin, Münevver; Department of Scientific Computing (2008)
We consider the stabilized finite element method for solving the incompressible Navier-Stokes equations and the magnetohydrodynamic (MHD) equations in two dimensions. The well-known instabilities arising from the application of standard Galerkin finite element method are eliminated by using the stabilizing subgrid method (SSM), the streamline upwind Petrov-Galerkin (SUPG) method, and the two-level finite element method (TLFEM). The domain is discretized into a set of regular triangular elements. In SSM, the...
Two-way Fourier Split Step Algorithm over Variable Terrain with Narrow and Wide Angle Propagators
Ozgun, Ozlem; Apaydin, Gökhan; Kuzuoğlu, Mustafa; Sevgi, Levent (2010-07-17)
Helmholtz's wave equation can be approximated by means of two differential equations, corresponding to forward and backward propagating waves each of which is in parabolic wave equation (PWE) form. The standard PWE is very suitable for marching-type numerical solutions. The one-way Fourier split-step parabolic equation algorithm (SSPE) is highly effective in modeling electromagnetic (EM) wave propagation above the Earth's irregular surface through inhomogeneous atmosphere. The two drawbacks of the standard ...
Solution of Navier-Stokes Equations Using FEM with Stabilizing Subgrid
Tezer, Münevver; Aydın Bayram, Selma (2009-07-03)
The Galerkin finite element method (FEM) is used for solving the incompressible Navier Stokes equations in 2D. Regular triangular elements are used to discretize the domain and the finite-dimensional spaces employed consist of piece wise continuous linear interpolants enriched with the residual-free bubble (RFB) functions. To find the bubble part of the solution, a two-level FEM with a stabilizing subgrid of a single node is described in our previous paper [Int. J. Numer. Methods Fluids 58, 551-572 (2007)]....
A Fully Implicit Finite Volume Lattice Boltzmann Method for Turbulent Flow
Cevik, Fatih; Albayrak, Kahraman (2017-08-01)
Almost all schemes existed in the literature to solve the Lattice Boltzmann Equation like stream & collide, finite difference, finite element, finite volume schemes are explicit. However, it is known fact that implicit methods utilizes better stability and faster convergence compared to the explicit methods. In this paper, a method named herein as Implicit Finite Volume Lattice BoltzmannMethod (IFVLBM) for incompressible laminar and turbulent flows is proposed and it is applied to some 2D benchmark test cas...
Citation Formats
S. Aydın Bayram, A. I. Nesliturk, and M. Tezer, “Two-level finite element method with a stabilizing subgrid for the incompressible MHD equations,” INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, pp. 188–210, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33353.