Unlusoy, Levent
Şahin, Melin
Yaman, Yavuz
In this study, the detailed finite element model (FEM) of an unmanned aerial vehicle wing torque box was verified by the experimental modal testing. During the computational studies the free-free boundary conditions were used and the natural frequencies and mode-shapes of the structure were obtained by using the MSC Software. The results were then compared with the experimentally obtained resonance frequencies and mode-shapes. It was observed that the frequencies were in close agreement having an error within the range of 1.5-3.6%.
11th ASME Biennial Conference on Engineering Systems Design and Analysis, (ESDA 2012)


An Approach for System Identification in Unmanned Surface Vehicles
Erunsal, Izzet Kagan; Ahiska, Kenan; Kumru, Murat; Leblebicioğlu, Mehmet Kemal (2017-10-21)
In this study, a system identification methodology is introduced to determine the model parameters of unmanned surface vehicles. The proposed identification scheme is based on sequencing the experiments according to their capabilities to identify the model parameters. In each experiment, the parameters to be found are updated and the results are validated before ascertaining the final value. A procedure to complete the identification work in an experiment, namely the required post-processing, the optimizati...
Improvement of finite element model by using sine vibration test results of acommunication satellite
Çekiç, Abdulkadir; Yaman, Yavuz; Department of Aerospace Engineering (2021-2-15)
In this thesis, the vibration analysis of a communication satellite is performed,and the improvementof the finite element model by using vibration test results is presented. First, the satellite finite element model isgenerated using MSC/PATRAN and MSC/NASTRAN commercial software. With the natural frequency and frequency response analysis, the expected frequency values and response amplitudes in accelerometers arecalculated in vibration tests. The results obtained in the vib...
Aerodynamic design and control of tandem wing unmanned aerial vehicle
Kaya, Taşkın; Özgen, Serkan; Department of Aerospace Engineering (2019)
This thesis presents an approach towards the design methodology of electrical propulsion, tandem wing unmanned aerial vehicle. Due to its possible rewarding features, tandem wing design is investigated as the main subject of this study. The stability and control characteristics of tandem wing aircraft are critical since the interference between the two wings may result in nonlinear aerodynamic characteristics for varying angles of attack. Thus, the design of the controller system requires careful handling, ...
Design and aerodynamic analysis of a VTOL tilt-wing UAV
Cakir, Hasan; Kurtuluş, Dilek Funda (2022-01-01)
The aerodynamic design and analysis of an Unmanned Air Vehicle, capable of vertical take-off and landing by employing fixed four rotors on the tilt-wing and two rotors on the tilt-tail, will be presented in this study. Both main wing and the horizontal tail can be tilted 90 degrees. During VTOL, transition and forward flight, aerodynamic and thrust forces have been employed. Different flight conditions, including the effects of angle of attack, side slip, wing tilt angle and control surfaces deflection angl...
Design, Modeling, and Control Allocation of a Heavy-Lift Aerial Vehicle Consisting of Large Fixed Rotors and Small Tiltrotors
Ozdogan, Gokhan; Leblebicioğlu, Mehmet Kemal (2022-02-01)
In this article, we propose an unconventional heavy-lift aerial vehicle (HLAV), present the design and its control allocation analysis, and prove the concept by the demonstration of the experimental test prototype in the outdoor environment. We aim for a mechanically robust and simple vehicle design that efficiently performs heavy lifting compared to other common aerial vehicles under certain width constraints, without using a complex swashplate mechanism. The HLAV performs the task of carrying the main loa...
Citation Formats
L. Unlusoy, M. Şahin, and Y. Yaman, “VERIFICATION OF A FINITE ELEMENT MODEL OF AN UNMANNED AERIAL VEHICLE WING TORQUE BOX VIA EXPERIMENTAL MODAL TESTING,” presented at the 11th ASME Biennial Conference on Engineering Systems Design and Analysis, (ESDA 2012), Nantes, FRANCE, 2012, Accessed: 00, 2020. [Online]. Available: