Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Aerodynamic design and control of tandem wing unmanned aerial vehicle
Download
index.pdf
Date
2019
Author
Kaya, Taşkın
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
833
views
363
downloads
Cite This
This thesis presents an approach towards the design methodology of electrical propulsion, tandem wing unmanned aerial vehicle. Due to its possible rewarding features, tandem wing design is investigated as the main subject of this study. The stability and control characteristics of tandem wing aircraft are critical since the interference between the two wings may result in nonlinear aerodynamic characteristics for varying angles of attack. Thus, the design of the controller system requires careful handling, in other words, linear aerodynamics envelope is a relatively constrained region for linear autopilot design. Nondimensional aerodynamic coefficients are determined for various angles of attack and flight speeds with CFD analysis using ANSYS Fluent software. Several airframe configurations are analyzed with CFD in consideration with the slotted wing effect. The airframe configuration with the most suitable aerodynamic characteristics is selected based on the CFD results. Three degrees of freedom flight simulation, which involves nonlinear aerodynamics, is used to test the performance of the attitude hold, acceleration and altitude hold autopilots for the selected tandem design. Finally, uncertainties and biases are randomly assigned and modeled with Monte-Carlo analysis to test the robustness of the autopilot and whether designed controllers are still capable of fulfilling mission requirements. Altogether, this study is a comprehensive one, which incorporates conceptual design, aerodynamic design and autopilot design phases of the tandem wing UAV.
Subject Keywords
Vehicles, Remotely piloted.
,
Keywords: Tandem Wing
,
UAV Conceptual Design
,
Slotted Wing Effect
,
Attitude Hold
,
Altitude Hold
,
Flight Simulation
,
Monte Carlo Analysis.
URI
http://etd.lib.metu.edu.tr/upload/12623631/index.pdf
https://hdl.handle.net/11511/44134
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Optimal Design of a Miniature Quad Tilt Rotor UAV
Kahvecioglu, Ahmet Caner; Alemdaroglu, Nafiz (2015-06-12)
This paper describes the design procedure of a convertible miniature (mini and micro) quad tilt rotor unmanned air vehicle (UAV), which has about 2 meters of wing span, one hour of mission time and 5 kilograms of total weight. The aircraft is driven by four brushless direct current motors, and the structure of it completely made of composite materials. When the wing and tail of the aircraft are dismounted, it operates as a quad- rotor with tilting rotors. The aircraft is planned to carry a gimbal camera wei...
Control system design and implementation of a tilt rotor UAV
Cevher, Levent; Tekinalp, Ozan; Department of Aerospace Engineering (2019)
In this thesis, a hybrid vertical take off and landing unmanned air vehicle platform is designed and developed. The platform uses tricopter configuration for takeoff and landing while it uses its fixed wings for forward flight. Control algorithms are developed for the VTOL aircraft. For this purpose, first nonlinear simulation code is developed in Matlab/Simulink environment. The simulation uses the wind tunnel experimental data for the propellers and aerodynamic data obtained from a package program XFLR 5 ...
Design and manufacturing of a quad tilt rotor unmanned air vehicle
Kahvecioğlu, Ahmet Caner; Alemdaroğlu, Hüseyin Nafiz; Department of Aerospace Engineering (2014)
This thesis presents the design and manufacturing process of a mini class quad tilt rotor unmanned air vehicle (UAV). An optimal design procedure is conducted to satisfy a set of pre-determined requirements, which ensure a competitive aircraft platform performing primarily intelligence, surveillance and reconnaissance missions in UAV market. The aircraft has four electric motors with tilting capability in one axis, which gives it the opportunity to combine the vertical take-off and landing capabilities with...
Hovering Control of a Tilt-Wing UAV
Çakır, Hasan; Kurtuluş, Dilek Funda (2019-09-20)
In this study, the design and analysis of hovering controller of an UAV which is capable of doing vertical take-off and landing using the fixed six rotors placed on the tilt-wing and tilt-tail will be explained. The aircraft will have four rotors on the wing and two rotors on the tail. The main wing and horizontal tail will be capable of 90° tilting. Whole flight is separated into three flight modes, which are VTOL, Transition and Forward Flight, to have a robust control on aircraft. Only hover control of t...
Vortex Formation and Force Generation Mechanisms of the DelFly II in Hovering Flight
Tenaglia, A; Perçin, Mustafa; Van Oudheusden, Bas W.; Deng, Shuanghou; Remes, Bart (2014-08-12)
This paper addresses the unsteady aerodynamic mechanisms in the hovering flight of the DelFly II flapping-wing Micro Aerial Vehicle (MAV). Stereoscopic Particle Image Velocimetry (Stereo-PIV) were carried out around the wings at a high framing rate. Thrust-force was measured to investigate the relation between the vortex dynamics and the aerodynamic force generation. The results reveal that the Leading-Edge-Vortex (LEV), as well as the high flexibility of the wings, have a major effect on thrust generation....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Kaya, “Aerodynamic design and control of tandem wing unmanned aerial vehicle,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Aerospace Engineering., Middle East Technical University, 2019.