Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
STATIC ANALYSIS OF A COMPOSITE WIND TURBINE BLADE USING FINITE ELEMENT MODEL
Date
2017-05-17
Author
Ozyildiz, Meltem
Çöker, Demirkan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
267
views
0
downloads
Cite This
This study is presented here that the stress characteristics of an existing 5-meter composite wind turbine blade for 30 kW wind turbine designed for METUWIND is known by using finite element method. Modal and static analysis is performed in order to obtain static and dynamic behavior of the blade. To perform analysis, the geometric three-dimensional model of the blade is obtained by using two-dimensional drawings of the blade. After geometric modeling of the blade, the materials that are used in blade structure are applied to Ansys ACP. Then, the blade structure model is adapted a finite element solver, Ansys Workbench. Finally, loading conditions are applied along the blade and the results are obtained. The results of this study indicate that the internal flange is the main force-supporting part, while other parts of the blade are mainly keeping the blade stable.
Subject Keywords
Composite materials
,
Finite element analysis
,
Static analysis
,
Wind turbine blade
URI
https://hdl.handle.net/11511/55675
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Design and analysis of test rig for small scale wind turbine blade
İçen, Mustafa.; Çöker, Demirkan; Department of Aerospace Engineering (2019)
In this thesis, a test setup for the experimental 5 meter RÜZGEM wind turbine blade and that can be used for small scale wind turbine blades up to 9 meter is designed and analyzed. The purpose of this thesis is to help establishing the test infrastructure under METUWIND project such as NREL, RISØ, CRES. The literature on the existing facilities is reviewed. After that, RÜZGEM wind turbine blade is introduced and design loads are presented. To apply these loads appropriately to the blade, the moment distribu...
Finite element modelling of a composite wind turbine blade with fully-bonded and partically unbonded trailing edge
Özyıldız, Meltem; Çöker, Demirkan; Department of Aerospace Engineering (2018)
In this thesis, strength analysis of an existing 5-meter glass-fiber epoxy composite wind turbine blade subjected to monotonic loading condition is presented. Finite element analysis is employed to simulate the virtual testing of the blade and understand the failure modes/mechanisms which may lead to the ultimate failure of the blade. CAD Model of the blade is prepared using NX 10.0 and ANSYS ACP/Pre module is utilized for building the material model of the blade. The evaluation of the stresses is carried o...
Comparative study of transient and quasi-steady aeroelastic analysis of composite wind turbine blade in steady wind conditions
Sargın, Hakan; Kayran, Altan; Department of Aerospace Engineering (2014)
The objective of this study is to conduct a comparative study of the transient and quasi-steady aeroelastic analysis of a composite wind turbine blade in steady wind conditions. Transient analysis of the wind turbine blade is performed by the multi-body dynamic code Samcef Wind Turbine which uses blade element momentum theory for aerodynamic load calculation. For this purpose, a multi-body wind turbine model is generated with rigid components except for the turbine blades. For the purposes of the study, a r...
Dynamic modeling, control and adaptive envelope protection system for horizontal axiswind turbines
Şahin, Mustafa; Yavrucuk, İlkay; Department of Aerospace Engineering (2018)
In this thesis study, a wind turbine envelope protection system is introduced to protect turbines throughout the below and above rated regions. The proposed protection system, which is based on a neural network, adapts to various turbines and operational conditions. It can keep the turbine within pre-defined envelope limits whenever a safe operation is about to be violated. The avoidance is realized by control limiting technique applied to the blade pitch controller output, thereby adjusting the blade pitch...
Analysis of a wind turbine foundation on stiff clay with analytical and 3D finite element methods
Yaşar, Baki Eren; Huvaj Sarıhan, Nejan; Department of Civil Engineering (2019)
Optimum design of onshore wind turbine foundations have been a topic of interest in geotechnical engineering in recent decades. However, the literature is lacking a systematic methodology for the design of onshore wind turbine foundations with three-dimensional finite element method (3D FEM) and a practical study evaluating the factors affecting the foundation design. The goals of this study are (i) to present a comprehensive design procedure by summarizing the literature, (ii) to investigate the key issues...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ozyildiz and D. Çöker, “STATIC ANALYSIS OF A COMPOSITE WIND TURBINE BLADE USING FINITE ELEMENT MODEL,” 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55675.