Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Optimal Radar Detector Threshold Adaptation for Maneuvering Targets in Clutter
Date
2009-04-11
Author
Aslan, Murat Samil
Saranlı, Afşar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
197
views
0
downloads
Cite This
In this paper, we consider the problem of radar detector threshold optimization for maneuvering targets in clutter In the earlier works, the problem was studied in the context of the probabilistic data association filter (PDAF) for non-maneuvering targets. In this study, we have extended the ideas, which were applied to the PDAF to the interacting multiple model PDAF (IMM-PDAF) for maneuvering targets. The proposed optimization problem and its solution show better results over the traditional approaches in terms of track loss percentage and RMS position error criteria.
Subject Keywords
Tracking
,
Optimization
URI
https://hdl.handle.net/11511/55710
Conference Name
IEEE 17th Signal Processing and Communications Applications Conference
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A Multi-Dimensional Hough Transform Algorithm Based on Unscented Transform as a Track-Before-Detect Method
Sahin, Gozde; Demirekler, Mübeccel (2014-07-10)
In this study, a new Multi-Dimensional Hough Transform technique is proposed for the detection of dim targets in radar data. Multi-Dimensional Hough Transform is a Track-Before-Detect method that fuses Hough Transform results obtained on (x-t), (y-t) and (x-y) domains. The proposed study models Hough Transform results in (x-t) and (y-t) domains by Gaussians and transforms these Gaussians to (x-y) domain using Unscented Transform. This improves the computational efficiency significantly without degrading per...
Target Localization and Velocity Estimation Methods for Frequency-Only MIMO Radars
Kalkan, Yilmaz; Baykal, Buyurman (2011-05-27)
Target localization and the velocity estimation methods are proposed for frequency-only MIMO Radar with widely separated stations. For the target localization, time of arrival (TOA), angle of arrival (AOA) and frequency of arrival (FOA) informations can be used in cooperation. When the time resolution of the transmitted signals is not enough or good,i.e.; unmodulated CW radar, we can not rely on the TOA information to localize the target. On the other hand, if the frequency resolution of the transmitted sig...
A tracker-aware detector threshold optimization formulation for tracking maneuvering targets in clutter
Aslan, Murat Samil; Saranlı, Afşar (Elsevier BV, 2011-09-01)
In this paper, we consider a tracker-aware radar detector threshold optimization formulation for tracking maneuvering targets in clutter. The formulation results in an online method with improved transient performance. In our earlier works, the problem was considered in the context of the probabilistic data association filter (PDAF) for non-maneuvering targets. In the present study, we extend the ideas in the PDAF formulation to the multiple model (MM) filtering structures which use PDAFs as modules. Althou...
An interactive ranking-based multi-criteria choice algorithm with filtering: Applications to university selection
Karakaya, Gülşah (Orta Doğu Teknik Üniversitesi (Ankara, Turkey), 2019-6)
In this study, we develop an interactive algorithm to converge to the most preferred alternative of a decision maker (DM) among a set of discrete alternatives. The algorithm presents a limited number of alternatives to the DM and collects preference ranking of them iteratively. The preferences are modeled by a flexible and realistic preference function. To improve the performance, the alternatives presented are determined by a filtering method. We compare our algorithm with benchmark algorithms on nume...
A neural network method for direction of arrival estimation with uniform circular dipole array in the presence of mutual coupling
Caylar, Selcuk; Leblebicioğlu, Mehmet Kemal; Dural, Guelbin (2007-06-16)
In recent years application of Neural Network (NN) algorithms in both target tracking problem and DoA estimation have become popular because of the increased computational efficiency This paper presents the implementation of modified neural network algorithm(MN-MUST) to the uniform circular dipole array in the presence of mutual coupling. In smart antenna systems, mutual coupling between elements can significantly degrade the processing algorithms. In this paper mutual coupling affects on MN-MUST has been i...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. S. Aslan and A. Saranlı, “An Optimal Radar Detector Threshold Adaptation for Maneuvering Targets in Clutter,” presented at the IEEE 17th Signal Processing and Communications Applications Conference, Antalya, TURKEY, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55710.