Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
How Generous is the ELLPACK Sparse Matrix Storage Scheme for Finite Element Computations
Date
2012-11-03
Author
Akinci, Gokay
YILMAZ, ASIM EGEMEN
Kuzuoğlu, Mustafa
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
188
views
0
downloads
Cite This
Sparse matrices are occasionally encountered during solutions of various problems by means of numerical methods, such as the finite element method. ELLPACK sparse matrix storage scheme, one of the most widely used methods due to its implementation ease, is investigated in this study. The scheme uses excessive memory due to its definition. For the conventional finite element method, where the node elements are used, the excessive memory caused by redundant entries in the ELLPACK sparse matrix storage scheme becomes negligible for large scale problems. On the other hand, our analyses show that the redundancy is still considerable for the occasions where facet or edge elements have to be used.
Subject Keywords
Finite Element Method
,
Sparse Matrix
,
Edge Elements
,
Computational Electromagnetcis
,
ELLPACK
URI
https://hdl.handle.net/11511/55797
Conference Name
9th International Conference on Electronics Computer and Computation (ICECCO 2012)
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Excessive Memory Usage of the ELLPACK Sparse Matrix Storage Scheme throughout the Finite Element Computations
Akinci, Gokay; YILMAZ, ASIM EGEMEN; Kuzuoğlu, Mustafa (2014-12-01)
Sparse matrices are occasionally encountered during solution of various problems by means of numerical methods, particularly the finite element method ELLPACK sparse matrix storage scheme, one of the most widely used methods due to its implementation ease, is investigated in this study. The scheme uses excessive memory due to its definition. For the conventional finite element method, where the node elements are used, the excessive memory caused by redundant entries in the ELLPACK sparse matrix storage sche...
MUTUAL COUPLING EFFECTS OF FINITE RECTANGULAR PHASED-ARRAYS
YAVUZ, H; BUYUKDURA, OM (1994-04-14)
A rigorous integral equation formulation for the analysis of a phased array of flangemounted waveguide apertures is given for a finite number of elements and nonuniform spacings. The resulting set of ihtegrd equations is reduced to a matrix equation called the coupling matrix which relates the coefficients of all the modes in all the waveguides to one another. The solution then yields the dominant mode reflection coefficient, coefficients of scattered modes and hence the field in each waveguide. The blockTo...
Least squares differential quadrature time integration scheme in the dual reciprocity boundary element method solution of convection-diffusion problems
Bozkaya, Canan (2005-03-18)
The least squares differential quadrature method (DQM) is used for solving the ordinary differential equations in time, obtained from the application of the dual reciprocity boundary element method (DRBEM) for the spatial partial derivatives in convection-diffusion type problems. The DRBEM enables us to use the fundamental solution of the Laplace equation which is easy to implement computationally. The time derivative and the convection terms are considered as the nonhomogeneity in the equation which are ap...
Least-squares finite element solution of Euler equations with adaptive mesh refinement
Akargün, Hayri Yiğit; Sert, Cüneyt; Department of Mechanical Engineering (2012)
Least-squares finite element method (LSFEM) is employed to simulate 2-D and axisymmetric flows governed by the compressible Euler equations. Least-squares formulation brings many advantages over classical Galerkin finite element methods. For non-self-adjoint systems, LSFEM result in symmetric positive-definite matrices which can be solved efficiently by iterative methods. Additionally, with a unified formulation it can work in all flight regimes from subsonic to supersonic. Another advantage is that, the me...
On the solution of nonlinear algebraic equations following periodic forced response analysis of nonlinear structures using different nonlinear solvers
Kizilay, H. Sefa; Ciğeroğlu, Ender (2021-01-01)
In periodic forced response analysis of nonlinear structures, most of the time analytical solutions cannot be obtained due to the complex behavior of the nonlinearity and/or due to the number of nonlinear equations to be solved. Therefore, numerical methods are widely used. For periodic forced response analysis of nonlinear systems, generally Harmonic Balance Method (HBM) or Describing Function Method (DFM), which transform the nonlinear differential equations into a set of nonlinear algebraic equations, ar...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Akinci, A. E. YILMAZ, and M. Kuzuoğlu, “How Generous is the ELLPACK Sparse Matrix Storage Scheme for Finite Element Computations,” presented at the 9th International Conference on Electronics Computer and Computation (ICECCO 2012), Ankara, TURKEY, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55797.