A Flow Aggregation Method for the Scalable and Efficient Quality of Service Support in Next Generation Networks

2013-12-13
Sanli, Mustafa
Schmidt, Şenan Ece
Guran, Hasan Cengiz
The services in the Next Generation Network (NGN) will be created on demand by the customers and will require end-to-end Quality of Service (QoS) for each flow. A very significant component for the end-to-end QoS support in the Internet is the packet schedulers in the routers. The complexity of the packet scheduling algorithms increases with the number of flows. As a solution, flow aggregation decreases the number of flows processed by the scheduler. The previous work in the literature proves that if the flow aggregator is fair, the end-to-end delay bounds of the aggregated flows are preserved and suggests limiting the service rate for the aggregate flow to achieve fairness in the expense of a lower utilization of the network resources. In this paper, we present a new method for flow aggregation, which relaxes this limit on the aggregate service rate, to increase the link utilization. We analytically show that our aggregation method is fair. Consequently, the end-to-end delay bounds in the network are preserved. In addition, we provide simulation results to demonstrate the decreased average delay of the aggregated flow.
IEEE Global Communications Conference (GLOBECOM)

Suggestions

A comparative study of evolutionary network design
Kalkan, Sinan; Şehitoğlu, Onur Tolga; Üçoluk, Göktürk; Department of Computer Engineering (2003)
In network design, a communication network is optimized for a given set of parameters like cost, reliability and delay. This study analyzes network design problem using Genetic Algorithms in detail and makes comparison of different approaches and representations. Encoding of a problem is one of the most crucial design choices in Genetic Algorithms. For network design problem, this study compares adjacency matrix representation with list of edges representation. Also, another problem is defining a fair fitne...
Hardware design and implementation of packet fair queuing algorithms for the quality of service support in the high-speed internet
Sanli, Mustafa; Schmidt, Şenan Ece; Guran, Hasan Cengiz (2012-09-05)
The increasing amount of real-time traffic carried over the Internet requires end-to-end quality of service (QoS) support. To this end, the QoS Schedulers, that are implemented in routers, assign the available bandwidth resources to packet flows according to their respective allocated rates. Packet Fair Queuing (PFQ) schedulers can provide fair service and low end-to-end delay bound to the traffic flows. However, they have higher implementation complexity compared to other algorithms, because of the require...
An Analytical Model for Bounded WSNs with Unreliable Cluster Heads and Links
Omondi, Fredrick A.; Shah, Purav; Gemikonakli, Orhan; Ever, Enver (2015-10-29)
In Wireless Sensor Networks (WSNs), performance and availability are important in providing Quality of Service (QoS). WSNs are prone to failures that may result from software and hardware malfunctions, battery drain, tampering and link failures. In addition, sensors are resource constrained in terms of inadequate processing capacity, limited storage memory and restricted power supply. Alternating sensor operations between sleep and active modes whilst saving energy, has also introduced more challenges to th...
Design and implementation of scheduling and switching architectures for high speed networks
Sanlı, Mustafa; Güran, Hasan Cengiz; Schmidt, Şenan Ece; Department of Electrical and Electronics Engineering (2011)
Quality of Service (QoS) schedulers are one of the most important components for the end-to-end QoS support in the Internet. The focus of this thesis is the hardware design and implementation of the QoS schedulers, that is scalable for high line speeds and large number of traffic flows. FPGA is the selected hardware platform. Previous work on the hardware design and implementation of QoS schedulers are mostly algorithm specific. In this thesis, a general architecture for the design of the class of Packet Fa...
A Bound Based Method for Beamformer Design in Downlink Cloud Radio Access Networks
Kadan, Fehmi Emre; Yılmaz, Ali Özgür (2021-10-01)
Cloud Radio Access Network is a candidate solution in 5G and beyond where we intend to serve as many users as possible with minimum transmit power and minimum fronthaul data transmission. In this study, we aim to maximize a mixed expression of the number of users served, the number of fronthaul links used, and the total transmitted power by beamforming optimization under imperfect channel state information. We find a theoretical upper bound and propose a method based on the bound derivation. We compare its ...
Citation Formats
M. Sanli, Ş. E. Schmidt, and H. C. Guran, “A Flow Aggregation Method for the Scalable and Efficient Quality of Service Support in Next Generation Networks,” presented at the IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55877.