Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Dynamic mechanical analysis of provisional resin materials reinforced by metal oxides
Date
2005-01-01
Author
Korkmaz, T
Doan, A
Usanmaz, Ali
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
215
views
0
downloads
Cite This
In this study, several provisional resin materials were investigated by dynamic mechanical analysis (DMA). The materials were autopolymerized PMMA and PEMA, light cured PMMA. Autopolymerized PMMA has the highest T-g (131 degrees C) compared to that of the autopolymerized PEMA (102 degrees C) and light cured PMMA (120 degrees C). The storage moduli for autopolymerized PMMA, autopolymerized PEMA and light cured PMMA are 2.9, 1.8 and 2.3 GPa, respectively. The loss moduli of the same resins are 330, 300 and 350 MPa, respectively. Each of these resins were reinforced with 1%, 3% and 5% of each of metal oxides of MgO, ZrO2 and Al2O3 and then studied with DMA. Small changes were observed for dynamic mechanical properties tested. However, the changes are not systematic and noticeable. This is most probably due to smaller size of metal oxides particles compared to that of polymer particle size.
Subject Keywords
Dynamic mechanical analysis (DMA)
,
Autopolymerized PMMA and PEMA
,
Light cured PMMA
,
Provisional restorative materials
URI
https://hdl.handle.net/11511/55918
Journal
BIO-MEDICAL MATERIALS AND ENGINEERING
Collections
Graduate School of Natural and Applied Sciences, Article
Suggestions
OpenMETU
Core
Transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites
Şen, Özge; Turhan, Doğan; Department of Engineering Sciences (2005)
In this study, transient dynamic response of viscoelastic cylinders enclosed in filament wound cylindrical composites is investigated. Thermal effects, in addition to mechanical effects, are taken into consideration. A generalized thermoelasticity theory which incorporates the temperature rate among the constitutive variables and is referred to as temperature-rate dependent thermoelasticity theory is employed. This theory predicts finite heat propagation speeds. The body considered in this thesis consists o...
Local Structure and Chemistry in Marginal Forming Alloys
Ulucan, Tolga Han; Kalay, Eren; Department of Metallurgical and Materials Engineering (2020-9)
In this thesis structural and corresponding mechanical properties of marginal metallic glass-forming alloys were studied. Al90Tb10 system exhibits unique devitrification features due to their exceptional primary crystallization products of Al nanocrystals with populations reaching up to 1024 m−3 . A full agreement on how this abnormal nucleation event occurs is still lacking. Our previous studies on Al-RE (RE: rareearth element) have shown that two different amorphous precursors prepared using melt-sp...
Numerical and experimental investigaton of ultrasonic embossing technique for fabrication of thermoplastic microfluidic devices
Çoğun, Ferah; Arıkan, Mehmet Ali Sahir; Yıldırım, Ender; Department of Mechanical Engineering (2018)
In this study, numerical models and experimental results were presented to describe mechanisms of hot embossing (HE) and ultrasonic embossing (UE) for fabrication of thermoplastic microfluidic chips. The substrates were embossed using micromilled aluminum molds in both techniques. Effects of embossing temperature, time, and force on performance outputs (replication rates and channel symmetry) were investigated numerically and experimentally in HE. Experimental results revealed the importance of temperature ...
Process characterization of composite structures manufactured using resin impregnation techniques
Miskbay, Adem Onur; Parnas, Kemal Levend; Department of Mechanical Engineering (2009)
The aim of this study is to investigate and compare the properties of two layer carbon epoxy composite plates manufactured using various resin impregnation techniques; Resin Transfer Molding (RTM), Light RTM (LRTM), Vacuum Assisted RTM (VARTM) and Vacuum Packaging (VP). Throughout the study a different packaging method was developed and named Modified Vacuum Packaging (BP). The mechanical properties of composite plates manufactured are examined by tensile tests, compressive tests, in-plane shear tests and t...
Investigation on replication of microfluidic channels by hot embossing
Yıldırım, Ender; Arıkan, Mehmet Ali Sahir (2017-01-01)
In this study, effects of embossing temperature, time, and force on production of a microfluidic device were investigated. Polymethyl methacrylate (PMMA) substrates were hot embossed by using a micromilled aluminum mold. The process parameters were altered to observe the variation of replication rate in width and depth as well as symmetry of the replicated microfluidic channels. Analysis of variance (ANOVA) on the experimental results indicated that embossing temperature was the most important process param...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Korkmaz, A. Doan, and A. Usanmaz, “Dynamic mechanical analysis of provisional resin materials reinforced by metal oxides,”
BIO-MEDICAL MATERIALS AND ENGINEERING
, pp. 179–188, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55918.