Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Investigation on replication of microfluidic channels by hot embossing
Date
2017-01-01
Author
Yıldırım, Ender
Arıkan, Mehmet Ali Sahir
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
219
views
0
downloads
Cite This
In this study, effects of embossing temperature, time, and force on production of a microfluidic device were investigated. Polymethyl methacrylate (PMMA) substrates were hot embossed by using a micromilled aluminum mold. The process parameters were altered to observe the variation of replication rate in width and depth as well as symmetry of the replicated microfluidic channels. Analysis of variance (ANOVA) on the experimental results indicated that embossing temperature was the most important process parameter, whereas embossing time and force have less impact. One distinguishing aspect of this study is that, the channels were observed to be skewed to either side of the channel depending on the location of the protrusions on the mold. The mechanism of the skewness was investigated by finite element analysis and discussed in detail. Results showed that the skewness depends on the flow characteristics of the material and could be reduced by increasing the embossing temperature. The best replication rates were obtained at parameter settings of 115 degrees C, 10kN, and 8min for the molds with minimum 56 mu m wide features of 120 mu m depth. We also showed that the fabricated channels could be successfully sealed by solvent-assisted thermo-compressive bonding at 85 degrees C under 5.5kN force.
Subject Keywords
Replication
,
PMMA
,
Plastic
,
Microfluidics
,
Hot
,
Embossing
,
Bonding
,
Channel
URI
https://hdl.handle.net/11511/41949
Journal
MATERIALS AND MANUFACTURING PROCESSES
DOI
https://doi.org/10.1080/10426914.2017.1317795
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Investigation of photovoltaic properties of amorphous InSe thin film based Schottky devices
Yilmaz, K.; Parlak, Mehmet; Ercelebi, C. (IOP Publishing, 2007-12-01)
In this study, device behavior of amorphous InSe thin films was investigated through I-V, C-V and spectral response measurements onto SnO2/p-InSe/metal Schottky diode structures. Various metal contacts such as Ag, Au, Al, In and C were deposited onto amorphous p-InSe films by the thermal evaporation technique. The best rectifying contact was obtained in a SnO2/p-InSe/Ag Schottky structure from I-V measurements, while the Au contact had poor rectification. Other metal contacts (Al, In and C) showed almost oh...
Dynamic mechanical analysis of provisional resin materials reinforced by metal oxides
Korkmaz, T; Doan, A; Usanmaz, Ali (2005-01-01)
In this study, several provisional resin materials were investigated by dynamic mechanical analysis (DMA). The materials were autopolymerized PMMA and PEMA, light cured PMMA. Autopolymerized PMMA has the highest T-g (131 degrees C) compared to that of the autopolymerized PEMA (102 degrees C) and light cured PMMA (120 degrees C). The storage moduli for autopolymerized PMMA, autopolymerized PEMA and light cured PMMA are 2.9, 1.8 and 2.3 GPa, respectively. The loss moduli of the same resins are 330, 300 and 35...
Significance of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors
Ates, CİHAN; Selçuk, Nevin; Külah, Görkem (2018-02-01)
In this study, effect of particle concentration distribution on radiative heat transfer in circulating fluidized bed combustors (CFBCs) is investigated. The aim is to identify how important it is to include axial and radial variations of particle concentration along the splash and dilute zones in radiative heat transfer calculations and to determine the predictive accuracy of simple OD and 1D approximations for particle concentration distribution in the riser by benchmarking their predictions against a semi...
Analysis of effects of temperature variation on deep drawing process using different constitutive laws
Demirkol, Rasih Hakan; Darendeliler, Haluk; Department of Mechanical Engineering (2019)
In this study, the influences of temperature variation in deep drawing process are investigated by changing the temperatures of the whole blank, a part of the blank, the punch and die. Different yield criteria and hardening rules are considered to form the constitutive relations. The numerical results are obtained by using a commercial finite element software. Whereas Von-Mises and Hill48 yield criteria are available in the finite element code, a subroutine is developed for embedding the Yld2003 yield crite...
Experimental investigation of residual stresses introduced via shot peening and their effect on fatigue life of ball bearings
Küçükyılmaz, Ali; Gür, Cemil Hakan; Department of Metallurgical and Materials Engineering (2010)
In this study, residual stresses introduced via application of shot peening on the raceways of bearing rings and their effect on the fatigue life was investigated experimentally. For improvement of residual compressive stress state, shot peening operation with different parameters was utilized. Residual stress measurements were conducted via X-ray diffraction technique. Optimization of residual stress state during the production of ball bearings is the main target of this study. Process parameters for shot ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Yıldırım and M. A. S. Arıkan, “Investigation on replication of microfluidic channels by hot embossing,”
MATERIALS AND MANUFACTURING PROCESSES
, pp. 1838–1844, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41949.