Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Energy Dissipation Capacity of Reinforced Concrete Columns under Cyclic Displacements
Date
2012-07-01
Author
Acun, Bora
Sucuoğlu, Haluk
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
68
views
0
downloads
Cite This
The energy dissipation capacity of reinforced concrete (RC) columns is investigated under inelastic cyclic displacements. Experimental data are obtained from 20 column specimens tested under constant-amplitude displacement cycles and from three column specimens tested under variable-amplitude displacement cycles. The effect of failure mode, displacement ductility, material properties, and detailing on the energy dissipation capacity of columns is investigated first under constant-amplitude loading. A simple model is developed for predicting the cyclic energy dissipation capacity under constant-amplitude inelastic displacement cycles. Then, an analytical procedure is introduced for estimating the energy dissipation under variable-amplitude displacement cycles by using the energy dissipation capacity, under constant-amplitude displacements. The proposed procedure is verified with the test results.
Subject Keywords
Columns
,
Effective damping
,
Energy dissipation capacity
,
Loading path
URI
https://hdl.handle.net/11511/55937
Journal
ACI STRUCTURAL JOURNAL
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Adsorption and dissociation of PH3 on SiGe(100) (2x1) surface
Turkmenoglu, Mustafa; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2008-06-01)
The most stable structures for the adsorption and dissociation of phosphine (PH3) on SiGe(100) (2 x 1) surface have been investigated by relative total energy calculations based on density functional theory. According to the optimization calculations, PH3 is adsorbed on the Si (down) and Ge (down) site of the Ge-Si and Ge-Ge dimers on SiGe surface, respectively. The PH2 and H products have been found to be thermodynamically favored in the dissociation path of PH3 on SiGe surface when the system is thermally...
Stress Scaling Factors for Seismic Soil Liquefaction Engineering Problems: A Performance-Based Approach
Çetin, Kemal Önder; Bilge, Habib Tolga (2013-06-19)
Most of the widely used seismic soil liquefaction triggering methods propose cyclic resistance ratio (CRR) values valid at the reference normal effective stress (sigma(v,0)') of one atmosphere and zero static shear stress (tau(st,0)) states. Then, a series of correction factors are applied on this reference CRR, for the purpose of assessing the variability due to normal effective and static shear stress states (i.e. K-sigma and K-alpha corrections) acting on the horizontal plane. In the literature, a number...
ELECTRICAL RESISTIVITIES OF LIQUID AL-MG AND AL-CU ALLOYS
KHAJIL, TMA; Tomak, Mehmet (1989-05-01)
The electrical resistivity of liquid Al−Mg and Al−Cu alloys is calculated using both the Faber-Ziman and «2k F» scattering theories. The partial structure factors are described by the hard-sphere system. The calculated resistivity values are in qualitative agreement with available experimental data.
Thermal stresses in elastic-plastic tubes with temperature-dependent mechanical and thermal properties
Orcan, Y; Eraslan, Ahmet Nedim (2001-11-01)
The thermoelastic-plastic deformations of internal heat-generating tubes are investigated by considering the temperature dependence of the thermal conductivity coefficient, Young's modulus, the coefficient of thermal expansion, and the yield limit of the material. A model describing the elastic-plastic behavior of the tube is developed. The model consists of a system of two second-order ordinary differential equations and a first-order ordinary differential equation involving nonlinear temperature-dependent...
Thermal stability of benzorods: Molecular-dynamics simulations
Malcıoğlu, Osman Barış (Elsevier BV, 2005-12-01)
Thermal stability of benzorods 2C6-20C6, which are obtained by stacking n (n=2-20) dehydrogenated benzene, have been investigated by molecular-dynamics simulations. It has been found that these structures assume a geometrical form depending on the number of dehydrogenated benzene layers, and they are stable under heat treatment up to elevated temperatures with a dependence on length.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Acun and H. Sucuoğlu, “Energy Dissipation Capacity of Reinforced Concrete Columns under Cyclic Displacements,”
ACI STRUCTURAL JOURNAL
, pp. 531–540, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/55937.