EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER PERFORMANCE OF SQUARE, CYLINDRICAL AND PLATE HEAT SINKS IN EXTERNAL TRANSITION FLOW REGIME

2019-01-01
İnci, Aykut Barış
Bayer, Özgür
Geometrical optimization of heat sinks with square, cylindrical and plate fins for heat transfer increase is numerically analyzed in transition regime external flow. The relations between the thermal characteristics of fins and boundary conditions such as free-stream velocity are investigated. Experimental studies are performed by using manufacturable fins to validate the numerical model. Heat transfer correlations are derived in order to determine average heat transfer coefficients over a certain range of both Reynolds number and non-dimensional geometric parameters like spanwise and streamwise spacings. Confidence level of the experimental work is demonstrated by uncertainty analysis. Cylindrical fins are observed to be approximately 4.5% superior to ones with square and plate profiles in terms of maximum base plate temperature.
ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY

Suggestions

Numerical and experimental analysis for comparison of square, cylindrical and plate fin arrays in external flow
İnci, Aykut Barış; Bayer, Özgür; Department of Mechanical Engineering (2018)
Geometrical optimization of square, cylindrical and plate fins for heat transfer augmentation is numerically performed in the external flow. Heat transfer performance of fins with different profiles are compared with same Reynolds number. The relation between the thermal characteristic of fins and boundary conditions like free-stream velocity and heat input are investigated. Experimental studies are performed using manufacturable fins to validate numerical model. Heat transfer correlations are derived in or...
Numerical simulation of thermal convection under the influence of a magnetic field by using solenoidal bases
Yarımpabuç, Durmuş; Tarman, Işık Hakan; Department of Engineering Sciences (2011)
The effect of an imposed magnetic field on the thermal convection between rigid plates heated from below under the influence of gravity is numerically simulated in a computational domain with periodic horizontal extent. The numerical technique is based on solenoidal basis functions satisfying the boundary conditions for both velocity and induced magnetic field. The expansion bases for the thermal field are also constructed to satisfy the boundary conditions. The governing partial differential equations are ...
Experimental investigation and CFD analysis of rectangular profile FINS in a square channel for forced convection regimes
Ayli, Ece; Bayer, Özgür; Aradağ Çelebioğlu, Selin (2016-11-01)
Steady-state heat transfer from rectangular fin arrays is examined experimentally and numerically for turbulent fully developed flow. The effects of geometrical parameters on heat transfer coefficient and Nusselt number are investigated. For different inter fin ratios, Reynolds number and Nusselt number dependence of the results is investigated. A generalized empirical correlation for Nusselt number is developed for rectangular fins for a Reynolds number range of 17 x 10(7) < Re < 2.47 x 10(8), and an aspec...
Experimental investigation of single phase liquid flow and heat transfer in multiport minichannels
Altınöz, Mesru; Güvenç Yazıcıoğlu, Almıla; Baker, Derek Keıth; Department of Mechanical Engineering (2013)
This thesis aims to experimentally investigate pressure drop and heat transfer characteristics of single phase water flow in rectangular minichannels. The small channels are an area of interest in heat transfer field since 1970’s owing to their enhanced heat transfer characteristics. However, the heat transfer and pressure drop characteristics of these channels are not fully established as there is a wide number of studies in literature showing inconsistent results with each other. In order to investigate t...
A numerical study of single-phase convective heat transfer in microtubes for slip flow
Sun, Wei; Kakac, Sadik; Yazicioglu, Almila G. (2007-11-01)
The steady-state convective heat transfer for laminar, two-dimensional, incompressible rarefied gas flow in the thermal entrance region of a tube under constant wall temperature, constant wall heat flux, and linear variation of wall temperature boundary conditions are investigated by the finite-volume finite difference scheme with slip flow and temperature jump conditions. Viscous heating is also included, and the solutions are compared with theoretical results where viscous heating has been neglected. For ...
Citation Formats
A. B. İnci and Ö. Bayer, “EXPERIMENTAL AND NUMERICAL STUDY ON HEAT TRANSFER PERFORMANCE OF SQUARE, CYLINDRICAL AND PLATE HEAT SINKS IN EXTERNAL TRANSITION FLOW REGIME,” ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, pp. 151–161, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56011.