Optimized Transmission of 3D Video over DVB-H Channel

2012-01-17
Bugdayci, Done
Akar, Gözde
Gotchev, Atanas
In this paper, we present a complete framework of an end-to-end error resilient transmission of 3D video over DVB-H and provide an analysis of transmission parameters. We perform the analysis for various layering, protection strategy and prediction structure using different contents and different channel conditions.
IEEE Consumer Communications and Networking Conference (CCNC)

Suggestions

Error resilient layered stereoscopic video streaming
Tan, A. Serdar; Aksay, Anil; Bilen, Cagdas; Akar, Gözde; ARIKAN, ERDAL (2007-05-09)
In this paper, error resilient stereoscopic video streaming problem is addressed. Two different Forward Error Correction (FEC) codes namely Systematic LT and RS codes are utilized to protect the stereoscopic video data against transmission errors. Initially, the stereoscopic video is categorized in 3 layers with different priorities. Then, a packetization scheme is used to increase the efficiency of error protection. A comparative analysis of RS and LT codes are provided via simulations to observe the optim...
VERTEX PARTITIONING BASED MULTIPLE DESCRIPTION CODING OF 3D DYNAMIC MESHES
Bici, M. Oguz; Stefanoski, Nikolce; Akar, Gözde (2009-05-06)
In this paper, we propose a Multiple Description Coding (MDC) method for reliable transmission of compressed time consistent 3D dynamic meshes. It trades off reconstruction quality for error resilience to provide the best expected reconstruction of 3D mesh sequence at the decoder side. The method is based on partitioning the mesh vertices into two sets and encoding each set independently by a 3D dynamic mesh coder. The encoded independent bitstreams or so-called descriptions are transmitted independently. T...
Joint source-channel coding for error resilient transmission of static 3D models
Bici, Mehmet Oguz; Norkin, Andrey; Akar, Gözde (2012-01-01)
In this paper, performance analysis of joint source-channel coding techniques for error-resilient transmission of three dimensional (3D) models are presented. In particular, packet based transmission scenarios are analyzed. The packet loss resilient methods are classified into two groups according to progressive compression schemes employed: Compressed Progressive Meshes (CPM) based methods and wavelet based methods. In the first group, layers of CPM algorithm are protected unequally by Forward Error Correc...
Analysis of experimental data sets for local scour depth around bridge abutments using artificial neural networks
Tiğrek, Şahnaz; Şarlak, Nermin (Academy of Science of South Africa, 2011-10-31)
The performance of soft computing techniques to analyse and interpret the experimental data of local scour depth around bridge abutment, measured at different laboratory conditions and environment, is presented. The scour around bridge piers and abutments is, in the majority of cases, the main reason for bridge failures. Therefore, many experimental and theoretical studies have been conducted on this topic. This study sought to answer the following questions: Firstly, can data collected by different researc...
Unequal Error Protection: An Information-Theoretic Perspective
Borade, Shashi; Nakiboğlu, Barış; Zheng, Lizhong (2009-12-01)
An information-theoretic framework for unequal error protection is developed in terms of the exponential error bounds. The fundamental difference between the bit-wise and message-wise unequal error protection (UEP) is demonstrated, for fixed-length block codes on discrete memoryless channels (DMCs) without feedback. Effect of feedback is investigated via variable-length block codes. It is shown that, feedback results in a significant improvement in both bit-wise and message-wise UEPs (except the single mess...
Citation Formats
D. Bugdayci, G. Akar, and A. Gotchev, “Optimized Transmission of 3D Video over DVB-H Channel,” presented at the IEEE Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56036.