Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
FEM-Based Design Modifications and Efficiency Improvements of a Brushed Permanent Magnet DC Motor
Date
2017-05-27
Author
Tarvirdilu-Asl, Rasul
Zeinali, Reza
Ertan, Hulusi Bülent
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
220
views
0
downloads
Cite This
This paper describes design modifications of a brushed permanent magnet DC motor. Test motor is modeled using a Finite Element Method (FEM) based software. Model accuracy is investigated by comparing measurement and simulation results. Reducing material consumption in motor fabrication while the motor develops the desired torque at a higher efficiency is aimed in this paper. Modifications are done in three stages and simulations results are also presented. These results are also compared to simulation results of the test machine.
Subject Keywords
Design midifications
,
Brushed permanet magnet DC motor
,
Finite element method
URI
https://hdl.handle.net/11511/56054
Conference Name
International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) / Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP)
Collections
Graduate School of Natural and Applied Sciences, Conference / Seminar
Suggestions
OpenMETU
Core
Robustness Adaptive Control For a Permanent Magnet Synchronous Motor
Rebouh, S.; Kaddouri, A.; Abdessemed, R.; Haddoun, A. (2011-09-10)
This paper presents a vector control permanent magnet synchronous motor drive using backstepping control design. Backstopping control is proposed for replacing the existing PI controller to obtain high performance motion control systems for the speed control loop. Stability analysis based on Lyapunov theory is also performed to guarantee the convergence of the speed tracking error from all possible initials conditions. Computer simulations have been carried out in order to validate the effectiveness of the ...
Computational modelling of carbon nanotube reinforced polymer composites
Zuberi, Muhammad Jibran Shahzad; Esat, Volkan; Electrical and Electronics Engineering (2014-7)
This thesis investigates the effects of chirality and size of single-walled carbon nanotubes (SWNTs) on the mechanical properties of both SWNTs and carbon nanotube reinforced epoxy composites (CNTRPs). First, a novel 3D beam element finite element model is developed based on equivalent-continuum mechanics approach and used for replacing C-C chemical bond for modelling SWNTs. The effects of diameter and chirality on the Young’s moduli, shear moduli, shear strains and Poisson’s ratios of SWNTs are studied. Fo...
Nano patterning of AISI 316L stainless steel with Nonlinear Laser Lithography: Sliding under dry and oil-lubricated conditions
Gnilitskyi, Iaroslav; Rotundo, Fabio; Martini, Carla; Pavlov, Ihor; Ilday, Serim; Vovk, Evgeny; Ilday, Fatih Omer; Orazi, Leonardo (2016-07-01)
Femtosecond laser-based Nonlinear Laser Lithography (NLL) was applied to AISI 316L stainless steel, which requires surface modification to achieve satisfactory tribological behaviour. NLL advances over the well-known Laser Induced Periodic Surface Structures (LIPSS) in terms of uniformity and long-range order of high speeds, over large areas. A galvanometric scanner head was used for an high production rate. Dry and lubricated sliding tests, considering different orientations of the nanotexture showed that ...
Dimensional accuracy improvement of fused filament fabrication holes utilizing modified interior
Sımsek, Seyda; Yaman, Ulaş (2016-11-16)
This paper proposes an alternative approach to improve the dimensional accuracy of the holes manufactured with Fused Filament Fabrication desktop 3D printers. As opposed to the state of the art techniques, where they scale the input geometric designs according to their predictive and statistical models, the proposed method modifies the interior of the artifacts with respect to the geometric properties of them to compensate for the shrinkages of the holes. That is, the shrinkage itself is utilized to elimina...
Eddy current Losses in Permanent Magnets of High Speed Synchronous Generators
Martin, F.; Bernard, N.; Zaim, M. E.; Tounzi, A.; Fratila, R. (2011-09-10)
In this paper, we investigate the eddy current losses in permanent magnets in a surface mounted magnet synchronous machines. A 2D analytical method is presented to calculate the losses due to the time and space harmonics. The validation of the analytical model is led through a 3D finite element method. The proposed method is then applied in case of a generator charging a battery through a full-wave bridge rectifier.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Tarvirdilu-Asl, R. Zeinali, and H. B. Ertan, “FEM-Based Design Modifications and Efficiency Improvements of a Brushed Permanent Magnet DC Motor,” presented at the International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) / Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), Transilvania Univ Brasov, Brasov, ROMANIA, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56054.