Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Non-sinusoidal path optimization of dual airfoils flapping in a biplane configuration
Date
2009-10-12
Author
KAYA, MUHAMMED ÇAĞRI
Tuncer, İsmail Hakkı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
158
views
0
downloads
Cite This
The path of dual airfoils in a biplane configuration undergoing a combined, non-sinusoidal pitching and plunging motion is optimized for maximum thrust and/or propulsive efficiency. The non-sinusoidal, periodic flapping motion is described using Non-Uniform Rational B-Splines (NURBS). A gradient based algorithm is then employed for the optimization of the NURBS parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver in a parallel computing environment based on domain decomposition. The numerical evaluation of the gradient vector components, which requires unsteady flow solutions, is also performed in parallel. It is shown that the thrust generation may significantly be increased in comparison to the sinusoidal flapping motion. © 2009 Springer-Verlag Berlin Heidelberg.
Subject Keywords
AIAA Journal
,
Leading Edge Vortex
,
Steep Ascent
,
Sinusoidal Motion
,
Thrust Generation
URI
https://hdl.handle.net/11511/56256
DOI
https://doi.org/10.1007/978-3-540-92744-0_7
Collections
Department of Aerospace Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Path optimization of dual airfoils flapping in a biplane configuration with RSM in a parallel computing environment
Kaya, Mustafa; Tuncer, İsmail Hakkı (2011-01-01)
The path of dual airfoils in a biplane configuration undergoing a combined, non-sinusoidal pitching and plunging motion is optimized for maximum thrust and/or propulsive efficiency. The non-sinusoidal, periodic flapping motion is described using Non-Uniform Rational B-Splines (NURBS). The Response Surface Methodology (RSM) is employed for the optimization of NURBS parameters in a parallel computing environment. A gradient based optimization algorithm, steepest ascent method is started from the optimum point...
Nonsinusoidal path optimization of a flapping airfoil
Kaya, Mustafa; Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 2007-08-01)
The path of a flapping airfoil undergoing a combined, nonsinusoidal pitching and plunging motion is optimized for maximum thrust and/or propulsive efficiency. The nonsinusoidal, periodic flapping motion is described using nonuniform rational B splines. A gradient based algorithm is then employed for the optimization of the nonuniform rational B-spline parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver in a parallel computing environment. The numerical evaluation of the g...
Path optimization of flapping airfoils based on unsteady viscous flow solutions
Kaya, Mustafa; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2008)
The flapping path of a single airfoil and dual airfoils in a biplane configuration is optimized for maximum thrust and/or propulsive efficiency. Unsteady, low speed viscous flows are computed using a Navier-Stokes solver in a parallel computing environment. A gradient based algorithm and Response Surface Methodology (RSM) are employed for optimization. The evaluation of gradient vector components and the design of experiments for RSM, which require unsteady solutions, are also carried out in parallel. Paral...
Optimization of Flapping Motion Parameters for Two Airfoils in a Biplane Configuration
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (American Institute of Aeronautics and Astronautics (AIAA), 2009-03-01)
Flapping motion parameters of airfoils in a biplane configuration are optimized for maximum thrust and/or propulsive efficiency. Unsteady, viscous flowfields over airfoils flapping in a combined plunge and pitch are computed with a parallel flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch and plunge motions and the phase shift between them are optimized for a range of flapping frequencies. A gradient-based optimization algorithm is implemented in a parallel computing...
Optimization of flapping motion of airfoils in biplane configuration for maximum thrust and/or efficiency
Kaya, Mustafa; Tuncer, İsmail Hakkı; Jones, Kevin D.; Platzer, Max F. (2007-01-01)
Flapping motion of airfoils in a biplane configuration are optimized for maximizing the thrust and propulsive efficiency. Unsteady flowfields over airfoils flapping in a combined plunge and pitch are computed with a parallel viscous flow solver on moving and deforming overset grids. The amplitudes of the sinusoidal pitch and plunge motions and the phase shift between them are optimized at a fixed flapping frequency and average distance between two airfoils. A gradient based optimization algorithm is impleme...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Ç. KAYA and İ. H. Tuncer, “Non-sinusoidal path optimization of dual airfoils flapping in a biplane configuration,” 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56256.