Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Nonsinusoidal path optimization of a flapping airfoil
Date
2007-08-01
Author
Kaya, Mustafa
Tuncer, İsmail Hakkı
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
3
views
0
downloads
The path of a flapping airfoil undergoing a combined, nonsinusoidal pitching and plunging motion is optimized for maximum thrust and/or propulsive efficiency. The nonsinusoidal, periodic flapping motion is described using nonuniform rational B splines. A gradient based algorithm is then employed for the optimization of the nonuniform rational B-spline parameters. Unsteady, low speed laminar flows are computed using a Navier-Stokes solver in a parallel computing environment. The numerical evaluation of the gradient vector components, which requires unsteady flow solutions, is also performed in parallel. It is shown that the thrust generation may significantly be increased in comparison to the sinusoidal flapping motion. For a maximum thrust generation, the airfoil stays at about a constant angle of attack during the upstroke and the downstroke, and may reach very high effective angle of attack values. The pitching motion mostly occurs at the minimum and maximum plunge positions.
Subject Keywords
Aerospace Engineering
URI
https://hdl.handle.net/11511/41650
Journal
AIAA JOURNAL
DOI
https://doi.org/10.2514/1.29478
Collections
Department of Aerospace Engineering, Article