Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
An Integrated Design Analysis Methodology to Address Piston Tribological Issues
Date
1993-03-01
Author
Keribar, Rıfat
Dursunkaya, Zafer
Venkatesh, Ganapathy
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
163
views
0
downloads
Cite This
An integrated simulation methodology for the analysis of piston tribology is presented. The methodology is comprised of coupled models of piston secondary dynamics, skirt oil film elastohydrodynamic lubrication and wristpin bearing hydrodynamics, developed earlier by the authors. Models have been further expanded to calculate distributions of cumulative wear load on the skirt and cylinder and to account for details of skirt crankcase end geometry. The skirt elasticity model has also been improved to account for the effects of piston crown and pin boss stiffness in conventional, one-piece pistons. The model predicts piston assembly secondary motions, piston (skirt) friction, skirt and wristpin oil film pressures, transient deformations, skirt-cylinder contact/impact pressures and skirt and cylinder wear loads. As such it constitutes an advanced integrated methodology for addressing key piston tribological design issues, i.e. friction, wear/scuffing, slap noise, through optimization of piston design. The methodology is applied in a series of parametric studies to investigate the effect of design and operating parameters (piston stiffness and mass, engine speed and load, skirt/cylinder temperatures and thermal deformations, skirt-cylinder cold clearance and pin offset) on the behavior of an automotive piston.
URI
https://hdl.handle.net/11511/56266
DOI
https://doi.org/10.4271/930793
Collections
Department of Mechanical Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
An artificial neural network estimator design for the inferential model predictive control of an industrial multi-component distillation column
Bahar, Almila; Özgen, Canan; Department of Chemical Engineering (2003)
An inferential control methodology, that utilizes an artificial neural network (ANN) estimator for a model predictive controller, is developed for an industrial multi-component distillation column. In the column, propane and butane is separated from a mixture of propane, n-butane, i-butane, and i-pentane with a top product purity of 96% propane and a bottom product purity of 63% n- butane. Dual composition control of the column must be used in a multivariable model predictive controller for an efficient ope...
A Numerical Approach to Simulating Oxidation in Thermal Barrier Coatings
Saeidi, Farid; Gürses, Ercan; Aslan, Özgür (Elsevier, Elsevier, 2020-01-01)
Computational analysis and simulation of multi-physics phenomena taking place in coating systems is still a challenging task. Specifically, for ceramic coatings used as a system of protection for base materials against elevated temperatures, known as thermal barrier coating (TBC) systems, construction of continuum level models which can express coupled nonlinear phenomena has attracted great attention. Thermal stresses, oxidation, creep and numerous other mechanisms and phenomena makes it even harder to mod...
An improved method for inference of piecewise linear systems by detecting jumps using derivative estimation
Selcuk, A. M.; Öktem, Hüseyin Avni (Elsevier BV, 2009-08-01)
Inference of dynamical systems using piecewise linear models is a promising active research area. Most of the investigations in this field have been stimulated by the research in functional genomics. In this article we study the inference problem in piecewise linear systems. We propose first identifying the state transitions by detecting the jumps of the derivative estimates, then finding the guard conditions of the state transitions (thresholds) from the values of the state variables at the state transitio...
An Interactive computational design approach for creating architectural topographiesi
Ongun, Gökhan; Mennan, Zeynep; Department of Architecture (2013)
The research aims at developing a digital environment for understanding and analyzing natural forces and designing according to the simultaneous feedback given by omputational tools. The thesis is an investigation into the concept of interactivity between the designer and computer through the use of computational fluid dynamic tools in a local context of Eastern Netherlands Coast, in response to the already dynamic natural fluid like elements such as air, coastal currents and sand particles. The behavior of...
An Efficient Parallel Solution Framework for the Linear Solution of Large Systems on PC Clusters
Kurç, Özgür (Tsinghua University Press, 2008-10-01)
In this paper, a parallel solution framework for the linear static analysis of large structures on PC clusters is presented. The framework consists of two main steps: data preparation and parallel solution. The parallel solution is performed by a substructure based method with direct solvers. The aim of the data preparation step is to create the best possible substructures so that the parallel solution time is minimized. An actual structural model was solved utilizing both homogeneous and heterogeneous PC c...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
R. Keribar, Z. Dursunkaya, and G. Venkatesh, “An Integrated Design Analysis Methodology to Address Piston Tribological Issues,” 1993, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56266.