Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Novel SIE formulations for accurate and stable analysis of near-zero-index materials
Date
2019-07-01
Author
KARAOSMANOGLU, BARISCAN
OZMU, UTKU
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
244
views
0
downloads
Cite This
© 2019 IEEE.We present surface-integral-equation formulations for accurate and stable solutions of electromagnetic problems involving near-zero-index materials with arbitrarily small permittivity and/or permeability values. The formulations are developed for conventional discretizations, while they can be implemented by using interaction routines of existing solvers. Initial results on canonical objects clearly demonstrate the superiority of the developed formulations in comparison to the conventional ones.
Subject Keywords
Permeability
,
Permittivity
,
Integral Equations
,
Convergence
,
Mathematical Model
,
Scattering
URI
https://hdl.handle.net/11511/56369
DOI
https://doi.org/10.1109/apusncursinrsm.2019.8889339
Conference Name
2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Modified Combined Tangential Formulation for Stable and Accurate Analysis of Plasmonic Structures
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-03-30)
We present a modified combined tangential formulation (MCTF) for stable solutions of plasmonic problems involving metallic objects that are modeled as penetrable structures. For a wide range of negative real permittivity values, corresponding to the varying characteristics of the metals at infrared and visible frequencies, MCTF provides both accurate and efficient solutions in comparison to the conventional formulations. We explain the stability of MCTF in terms of the discretized operators for the limit ca...
Analysis of Composite Structures Involving Near-Zero-Index Materials
Koyaz, Yesim; İbili, Hande; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2019-01-01)
We consider numerical solutions of electromagnetic problems involving near-zero-index materials with permittivity and/or permeability values close to zero. These types of problems are inherently multiscale due to the large variety of the wavelength from very large values to ordinary values in the same problem. In addition to developing a stable formulation for extreme values of the intrinsic impedance, we employ a broadband multilevel fast multipole algorithm based on approximate diagonalization for efficie...
Hybrid Surface Integral Equations for Optimal Analysis of Perfectly Conducting Bodies
Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2015-07-24)
We consider hybrid formulations involving simultaneous applications of the electric-field integral equation (EFIE), the magnetic-field integral equation (MFIE), and the combined-field integral equation (CFIE) for the electromagnetic analysis of three-dimensional conductors with arbitrary geometries. By selecting EFIE, MFIE, and CFIE regions on a given object, and optimizing these regions in accordance with the simulation requirements, one can construct an optimal hybrid-field integral equation (HFIE) that p...
Solutions of large-scale electromagnetics problems involving dielectric objects with the parallel multilevel fast multipole algorithm
Ergül, Özgür Salih (2011-11-01)
Fast and accurate solutions of large-scale electromagnetics problems involving homogeneous dielectric objects are considered. Problems are formulated with the electric and magnetic current combined-field integral equation and discretized with the Rao-Wilton-Glisson functions. Solutions are performed iteratively by using the multi-level fast multipole algorithm (MLFMA). For the solution of large-scale problems discretized with millions of unknowns, MLFMA is parallelized on distributed-memory architectures us...
A new differential formulation of acoustic scattering by rotationally symmetrical penetrable scatterers
Günalp, Nilgün; TOSUN, H (1994-07-01)
A new differential formulation is presented for acoustic wave scattering from rotationally symmetric penetrable bodies. The numerical implementation of this formulation is fairly simple, and comprises basically the construction of the state-transition matrix of a system of differential equations and the solution of a matrix equation. The validity and the accuracy of the numerical scheme are tested considering objects of known scattering behavior. Other numerical applications are also presented to demonstrat...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. KARAOSMANOGLU, U. OZMU, and Ö. S. Ergül, “Novel SIE formulations for accurate and stable analysis of near-zero-index materials,” presented at the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56369.