Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Adapted Infinite Kernel Learning by Multi-Local Algorithm
Date
2016-05-01
Author
Akyuz, Sureyya Ozogur
Ustunkar, Gurkan
Weber, Gerhard Wilhelm
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
224
views
0
downloads
Cite This
The interplay of machine learning (ML) and optimization methods is an emerging field of artificial intelligence. Both ML and optimization are concerned with modeling of systems related to real-world problems. Parameter selection for classification models is an important task for ML algorithms. In statistical learning theory, cross-validation (CV) which is the most well-known model selection method can be very time consuming for large data sets. One of the recent model selection techniques developed for support vector machines (SVMs) is based on the observed test point margins. In this study, observed margin strategy is integrated into our novel infinite kernel learning (IKL) algorithm together with multi-local procedure (MLP) which is an optimization technique to find global solution. The experimental results show improvements in accuracy and speed when comparing with multiple kernel learning (MKL) and semi-infinite linear programming (SILP) with CV.
Subject Keywords
Infinite Kernel Learning
,
Support Vector Machines
,
Optimization
,
Multi-Local Procedure
,
Multiple Kernel Learning
,
Simmulated Annealing
URI
https://hdl.handle.net/11511/56478
Journal
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
DOI
https://doi.org/10.1142/s0218001416510046
Collections
Graduate School of Applied Mathematics, Article
Suggestions
OpenMETU
Core
MODELLING OF KERNEL MACHINES BY INFINITE AND SEMI-INFINITE PROGRAMMING
Ozogur-Akyuz, S.; Weber, Gerhard Wilhelm (2009-06-03)
In Machine Learning (ML) algorithms, one of the crucial issues is the representation of the data. As the data become heterogeneous and large-scale, single kernel methods become insufficient to classify nonlinear data. The finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, we propose a novel method of "infinite" kernel combinations for learning problems with the help of infinite and semi-infinite programming regarding all elements in kernel space. Looking...
On numerical optimization theory of infinite kernel learning
Ozogur-Akyuz, S.; Weber, Gerhard Wilhelm (2010-10-01)
In Machine Learning algorithms, one of the crucial issues is the representation of the data. As the given data source become heterogeneous and the data are large-scale, multiple kernel methods help to classify "nonlinear data". Nevertheless, the finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, a novel method of "infinite" kernel combinations is proposed with the help of infinite and semi-infinite programming regarding all elements in kernel space. Look...
Learning to play an imperfect information card game using reinforcement learning
Alpaslan, Ferda Nur; Baykal, Ömer; Demirdöver, Buğra Kaan (2022-08-01)
Artificial intelligence and machine learning are widely popular in many areas. One of the most popular ones is gaming. Games are perfect testbeds for machine learning and artificial intelligence with various scenarios and types. This study aims to develop a self-learning intelligent agent to play the Hearts game. Hearts is one of the most popular trick-taking card games around the world. It is an imperfect information card game. In addition to having a huge state space, Hearts offers many extra challenges d...
Learning a partially-observable card game hearts using reinforcement learning
Demirdöver, Buğra Kaan; Alpaslan, Ferda Nur; Department of Computer Engineering (2020)
Artificial intelligence and machine learning are widely popular in many sectors. Oneof them is the gaming industry. With many different scenarios, different types, gamesare perfect for machine learning and artificial intelligence. This study aims to developlearning agents to play the game of Hearts. Hearts is one of the most popular cardgames in the world. It is a trick based, imperfect information card game. In additionto having a huge state space, hearts offers many extra challenges due to the nature ofth...
Deep learning approach for laboratory mice grimace scaling
Eral, Mustafa; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2016)
Deep learning is extremely attractive research topic in pattern recognition and machine learning areas. Applications in speech recognition, natural language processing, and machine vision fields gained huge acceleration in performance by employing deep learning. In this thesis, deep learning is used for medical purposes in order to scale pain degree of drug stimulated mice by examining facial grimace. For this purpose each frame in the videos in the training set were scaled manually by experts according to ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. O. Akyuz, G. Ustunkar, and G. W. Weber, “Adapted Infinite Kernel Learning by Multi-Local Algorithm,”
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE
, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56478.