Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
ON FOUNDATIONS OF PARAMETER ESTIMATION FOR GENERALIZED PARTIAL LINEAR MODELS WITH B-SPLINES AND CONTINUOUS OPTIMIZATION
Date
2010-02-04
Author
TAYLAN, PAKİZE
Weber, Gerhard Wilhelm
Liu, Lian
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
234
views
0
downloads
Cite This
Generalized linear models are widely-used statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms by a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on penalized maximum likelihood and on the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They become an important complementary technology and alternative to the penalty methods with the flexibility of choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by the elegant framework of conic quadratic programming. This paper is of a more theoretical nature and a preparation of real-world applications in future.
Subject Keywords
Regression
,
Generalized Linear Models
,
Generalized Partial Linear Models
,
Generalized Additive Model
,
Least Squares
,
Maximum Likelihood
,
Curvature
,
Newton-Rapshon Algorithm
,
Penalty Methods
,
Continuous Optimization
,
Conic Quadratic Programming
URI
https://hdl.handle.net/11511/56528
DOI
https://doi.org/10.1063/1.3459763
Conference Name
3rd Global Conference on Power Control and Optimization
Collections
Graduate School of Applied Mathematics, Conference / Seminar
Suggestions
OpenMETU
Core
On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization
TAYLAN, PAKİZE; Weber, Gerhard Wilhelm; Liu, Lian; Yerlikaya-Ozkurt, Fatma (Elsevier BV, 2010-07-01)
Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attract...
On the generalized multivariate Gumbel distribution
Demirhan, Haydar; Kalaylıoğlu Akyıldız, Zeynep Işıl (2015-08-01)
In this article, main characteristics, marginal, joint, and conditional inferences of a generalized multivariate Gumbel model are derived, and random vector generation is described. Distribution of the sum where summands come from a bivariate generalized multivariate Gumbel distribution is derived.
CMARS: a new contribution to nonparametric regression with multivariate adaptive regression splines supported by continuous optimization
Weber, Gerhard-Wilhelm; Batmaz, İnci; Köksal, Gülser; Taylan, Pakize; Yerlikaya-Ozkurt, Fatma (2012-01-01)
Regression analysis is a widely used statistical method for modelling relationships between variables. Multivariate adaptive regression splines (MARS) especially is very useful for high-dimensional problems and fitting nonlinear multivariate functions. A special advantage of MARS lies in its ability to estimate contributions of some basis functions so that both additive and interactive effects of the predictors are allowed to determine the response variable. The MARS method consists of two parts: forward an...
Algorithm Overview and Design for Mixed Effects Models
Koca, Burcu; Gökalp Yavuz, Fulya (2021-06-06)
Linear Mixed Model (LMM) is an extended regression method that is used for longitudinal data which has repeated measures within the individual. It is natural to expect high correlation between these repeats over a period of time for the same individual. Since classical approaches may fail to cover these correlations, LMM handles this significant concern by introducing random effect terms in the model. Besides its flexible structure in terms of modeling, LMM has several application areas such as clinical tri...
Recent results on Bayesian Cramér-Rao bounds for jump Markov systems
Fritsche, Carsten; Orguner, Umut; Svensson, Lennart; Gustafsson, Fredrik (2016-07-08)
In this paper, recent results on the evaluation of the Bayesian Cramer-Rao bound for jump Markov systems are presented. In particular, previous work is extended to jump Markov systems where the discrete mode variable enters into both the process and measurement equation, as well as where it enters exclusively into the measurement equation. Recursive approximations are derived with finite memory requirements as well as algorithms for checking the validity of these approximations are established. The tightnes...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
P. TAYLAN, G. W. Weber, and L. Liu, “ON FOUNDATIONS OF PARAMETER ESTIMATION FOR GENERALIZED PARTIAL LINEAR MODELS WITH B-SPLINES AND CONTINUOUS OPTIMIZATION,” Gold Coast, AUSTRALIA, 2010, vol. 1239, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/56528.