Topotactic solid-state polymerization of acenaphtylene by radiation

Usanmaz, Ali
Baytar, N
The radiation-induced solid-state polymerization of acenaphthylene was carried out under vacuum at room temperature. The monomer and obtained polymer samples were investigated by UV, FTIR, DSC, TG, and powder X-ray diffraction methods to characterize the polymer and elucidate the polymerization mechanism. The polymer samples were crystalline with melting points ranging in 380-390 degrees C interval. Polymerization takes place through vinyl groups by a radical mechanism and crystal structure of monomer and polymer studied by powder X-ray diffraction were quite similar. The space group for both were P22(1)2 and cell parameters: a = 784.2 (6), b = 798.1(6), c = 1417.0(1) pm for monomer, and a = 791.7(8), b = 803.8(7), c = 1431.0(1) pm for polymer. The similarity of crystal structures shows a topotactic polymerization of monomer.


Topotactic solid-state polymerization of 3-aminocrotonamide by radiation
Usanmaz, Ali; Melad, OK (Wiley, 1996-04-30)
Radiation-induced solid-state polymerization of 3-aminocrotonamide (3-amino-2-butenamide) was carried out at room temperature, in open air atmosphere and under vacuum condition. The polymer obtained was white powder, soluble in methanol, but insoluble in water. The nature of polymers were investigated by IR, UV, x-ray, DP-MS, and elemental analysis to elucidate the mechanism of the polymerization. The polymer was crystalline with melting point in the range of 245-255 degrees C. The cell parameters and space...
Crystal structure effect in radiation induced solid state polymerization of methacrylamide
Usanmaz, Ali; Kafadar, AB (Informa UK Limited, 2004-01-01)
Radiation induced solid state polymerization of methacrylamide was carried out, opened to atmosphere and under vacuum conditions at room temperature. The white colored powder polymers obtained were insoluble in most common organic solvents such as carbon tetrachloride, dimethysulfoxide, acetone, etc. The polymers were characterized by IR, direct pyrolysis mass spectrometer (DP-MS), XRD, TGA, and DSC methods. The mechanism of the polymerization was elucidated from these results. There were no definite effect...
CEVIK, NN; Usanmaz, Ali (Informa UK Limited, 1993-01-01)
4-Vinyl-1-cyclohexene was polymerized by radiation at room temperature under vacuum and in atmospheric air. The change of percent conversion with irradiation time is almost linear up to limiting conversion, but it is S-type in atmospheric air. It was shown that the mechanism of polymerization is most probably ionic rather than free-radical. The cationic polymerization was carried out in dichloromethane solution at -8-degrees-C using BF3(C2H5)2O as catalyst. The nature of the polymer obtained was investigate...
Reactive extrusion of poly(ethylene terephthalate)-(ethylene/methyl acrylate/glycidyl methacrylate)-organoclay nanocomposites
Alyamac, Elif; Yılmazer, Ülkü (Wiley, 2007-04-01)
This study was conducted to investigate the effects of component concentrations and addition order of the components on the final properties of ternary nanocomposites composed of poly(ethylene terephthalate), organoclay, and an ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer acting as an impact modifier for PET. In this context, first, the optimum amount of the impact modifier was determined by melt compounding binary PET-terpolymer blends in a corotating twin-screw extruder. The amount...
Microwave-assisted simultaneous synthesis of conducting, non-conducting and cross-linked polymers from sodium 2,4,6-tribromophenolate and LiOH
Celik, Gueler Bayrakli; Kisakuerek, Duygu (Informa UK Limited, 2007-01-01)
Poly(dibromophenylene oxide) (P) and conducting polymer (CP) and/or cross-linked polymer (CLP) were synthesized simultaneously from sodium 2,4,6-tribromophenol ate and LiOH by microwave energy in a very short time interval. Polymerizations were carried out (i) under constant microwave energy and constant amount of water with different time intervals ranging from I to 20 min, or (ii) at constant time intervals and constant amount of water with variation of microwave energy ranging from 90 to 900 W, or (iii) ...
Citation Formats
A. Usanmaz and N. Baytar, “Topotactic solid-state polymerization of acenaphtylene by radiation,” JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, pp. 161–173, 1998, Accessed: 00, 2020. [Online]. Available: